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1 Introduction

In these notes, epoch and frequency-dependent effects from interstellar refraction and diffraction
are analyzed. Three calculations are described. The first considers changes in DM due solely
to motions of the pulsar and the solar system through interstellar gas. The second analyzes the
apparent frequency dependence of the dispersion measure (DM) caused by the strong variation
of the scattered image with frequency. The third concerns the effects of a refracting screen on
measurable quantities such as arrival time, scintillation parameters, and scattered images and pulse
shapes.

For some cases, the combined effects of interplanetary and interstellar propagation are important.
Discussion of these is deferred to another analysis.

Dispersion and scattering are assumed to result from cold plasma in the high-frequency limit with
negligible contributions from magnetic fields.

The first calculation is based on a medium having an arbitrary electron density distribution and only
considers dispersion. The results include identification of both systematic and random contributions
to DM. These effects need to be combined with refraction and scattering for a complete discussion
of chromatic timing variations (which are considered in the third calculation).

In the second calculation (§3), a thin plasma screen transverse to the pulsar direction has electron
density variations are described by a power-law wavenumber spectrum extending over a wide range
of wavenumbers. Angular broadening introduces an averaging length scale in the medium that
causes the dispersion measure (DM) to vary with frequency. The essential effect is that DM at a
frequency ν ′ random walks away from DM at frequency ν as the ratio ν/ν ′ gets larger.

In the third calculation (§4), a thin screen is again used to analyze the interplay of dispersion,
refraction, and diffraction and flux-density variations by assuming that refraction and diffraction
arise from very different length scales so that they can be separated mathematically. This approach
differs significantly from the second calculation but is motivated by long-standing evidence that the
interstellar medium is more complex than an idealized power-law wavenumber spectral description.

In various places, specific pulsars are mentioned and specific studies are suggested for developing
a better understanding of the importance of various effects and understanding the ISM. Timing
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precision is the ultimate driver of these studies and follow-on studies for timing precision will be
described elsewhere.

It is expected that the results from all three calculations will need to be considered together in a
global analysis. Specific modeling of lines of sight can make use of scintillation-arc studies (e.g.
Stinebring 2007) that help locate electron-density enhancement along specific lines of sight.

2 DM Variations from Pulsar and Solar System Motion

Summary of this section: The dispersion measure will vary with time due to motions of the pulsar
and observer (and in some cases the medium) both along the line of sight (LOS) and transverse to
the LOS. Figure 1 shows the geometry. The LOS at t = 0 and t > 0 will differ by parallel and
perpendicular vectors,

`‖(t) = ∆v‖t ≡ (ve‖ − vp‖)t, (1)
`⊥(t, z) = veff⊥(z)t, (2)

where veff⊥(z) is the effective velocity at each location z along the LOS (defined below in Eq. 9).

Comments:

• The parallel and perpendicular offsets are comparable in magnitude (statistically).

• DMt will vary with time from parallel motion alone regardless of whether the ISM is uniform
or not; no gradients in electron density ne are needed. The variations will be monotonically
increasing or decreasing with time if there is no transverse motion (of the pulsar, solar system,
or medium).

• DM variations from transverse motion alone require gradients in ne that have components
transverse to the LOS, i.e. ∇ne · `⊥ 6= 0.

• Any gradients in ne will generally be manifested from both parallel and transverse motion.

• DM variations from parallel motion do not depend on the pulsar distance but the transverse
change in LOS depends on location along the LOS, therefore influencing the observable
effect from a transverse gradient.

• When the Earth’s orbital velocity is important, such as for a millisecond pulsar with low
translational velocity, the contribution to DMt depends on∇ne ·veff⊥(z, t) and therefore will
show a sinusoidal variation.

A useful form for DMt is

DMt = DM0 +
[
ne(xp0)vp‖ − ne(xe0)ve‖

]
t +

∫ zp0

ze0

dz ∆ne(xt(z)). (3)

The first term is the value at t = 0. The second term arises from parallel motion for the case where
there are no strong gradients in ne that are encountered over time t at either the pulsar location
(xp0) or near the solar system (xe0). This term by itself produces a DM structure function that is
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quadratic. The third term involves variations in ne on scales of order the change in LOS over time
t. For a stochastic medium, such as one with a Kolmogorov spectrum, this term gives the standard
∝ t5/3 scaling. However, small clouds with sizes of tens of AU and larger will also produce a
quadratic structure function. Investigation of DM variations therefore needs to account for these
square-law effects before the structure function can be interpreted in terms of any kind of power-law
wavenumber spectrum.

Some interesting implications of these results are:
1. Some pulsars will show DMt variations where parallel motion is more important than trans-

verse motion, and vice versa.
2. The two kinds of variations may be distinguishable. If gradients and transverse motion are

dominant, there should also be epoch-dependent refraction and flux-density variations on
the same time scales. However, parallel-motion effects need not be accompanied by strong
modulations of scintillation parameters and flux densities.

3. ISM structure local to the solar system may contribute to DMt variations and they will be
partially correlated between different pulsars. Representative numbers suggest that this ef-
fect is likely very small, at least at the present epoch. An upper bound may provide useful
constraints on the local ISM and heliospheric boundary.

2.1 Basic Setup

Consider changes in DM that result from motions of the pulsar and observer, which change both
the distance to the pulsar and the direction of the LOS, as shown in Figure 1. The initial distance
D0 = |xp0 − xe0| increases (to first order in time) as

D(t) ≈ D0 + (vp − ve) · n̂0 t ≡ D0 + ∆v‖t. (4)

The next, quadratic term, (∆v⊥t)2/2D0, is ∆v⊥t/D0 ∼ 10−6 times smaller than the linear term for
typical parameters (100 km s−1 velocity, 10-yr time span, and 1 kpc distance) and therefore can be
ignored in calculating the distance. The change in the unit vector toward the pulsar is determined
by the transverse velocity

n̂t = n̂0 +D−1
0 ∆v⊥t, (5)

where n̂0 = ∆x0/D0 = (xp0 − xe0)/D0.

Let the initial LOS at t = 0 be the z-axis and integrate over locations x0(z) = zẑ to get

DM0 =

∫ zp0

ze0

dz ne(x0(z). (6)

For t > 0 we integrate over a new interval [ze, zp] where

ze = ze0 + ve‖ t, zp = vp‖ t. (7)

The sampled locations are now xt(z) = r(z, t) + zẑ where r(z, t) is transverse to ẑ,

r(z, t) = veff⊥(z)t (8)

veff⊥(z) = ve⊥ + (vp⊥ − ve⊥)

(
z − ze
zp − ze

)
. (9)
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Figure 1: Geometry showing change in line of sight due to motion of pulsar and observer. DM is calculated by
integrated along the z axis taking into account the change in LOS.

Note that the locations ze and zp are evaluated at time t and it is assumed that there is no significant
acceleration correction over times of interest (years to decades).

The simplest approach is to evaluate the electron density for the t > 0 LOS in terms of its values
for the initial line of sight,

ne(xt(z)) = ne(x0(z)) + [ne(xt(z))− ne(x0(z))] (10)
≡ ne(x0(z)) + ∆ne(xt(z)). (11)

The DM integral over [ze, zp] can be expanded into a set of integrals over the three intervals [ze0 , zp],
[ze0 , ze], and [zp0 , zp] (Figure 2) to get

DMt =

∫ zp

ze

dz ne(xt(z)) (12)

=

∫ zp0

ze0

dz ne(xt(z)) +

∫ zp

zp0

dz ne(xt(z))−
∫ ze

ze0

dz ne(xt(z)). (13)

For the first integral we expand the integrand using Eq. 11 to get
∫ zp0

ze0

dz ne(xt(z)) = DM0 +

∫ zp0

ze0

dz ∆ne(xt(z)). (14)

This gives

DMt −DM0 =

∫ zp0

ze0

dz ∆ne(xt(z)) +

∫ zp

zp0

dz ne(xt(z))−
∫ ze

ze0

dz ne(xt(z)). (15)
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Figure 2: Three intervals along the z axis for calculating DM0 and DMt.

The first of these integrals involving ∆ne(xt(z)) needs to be considered only if electron density
variations are significant on length scales of order the offset between the LOS at t and the initial
LOS at t = 0, i.e. |∆xt(z)| = |xt(z) − x0(z)| � D0, e.g. ` ∼ 20 AU Veff⊥100tyr for a fiducial
velocity of 100 km s−1 and a year-long time span. All evidence from the last few decades of
interstellar scintillation studies are consistent with there being variations on these (multiples of
AU) and smaller scales. However, the detailed spectrum of variations on AU scales is not well
known and appears to differ between LOS to different pulsars.

The second two integrals in Eq. 15 are over small intervals zp − zp0 = vp‖t and ze − ze0 = ve‖t
so, to first order in these intervals, the two terms give ne(xp)vp‖t and ne(xe)ve‖t, where ne(xp)
and ne(xe) are averages over the respective intervals centered on xp = xp0 + (vp‖t/2)n̂t and xe =
xe0 + (ve‖t/2)n̂t, respectively. Unless there are large variations over the intervals, these average
locations can be taken as the initial ones at t = 0. The DM variations from these two terms
are a simple consequence of the change in pulsar distance due to parallel motion (the transverse
velocities enter only to second order and so are negligible in these terms).

When calculating the time derivative of DM(t) below, we will assume that true temporal changes
in electron density are negligible. This is often a good assumption because turbulent ISM velocities
are typically much smaller than pulsar velocities. For slow pulsars and fast plasma screens (e.g.
shock fronts), the ISM velocity needs to be included. This modifies the effective velocity defined
in Eq. 9 by adding −vm(z) (with m for medium), as in Cordes & Rickett (1998). For a purely tur-
bulent medium, this velocity is stochastic and would depend on wavenumber. However, a moving
screen is easily described with a translational velocity.
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2.2 Uniform Electron Density

For a perfectly uniform medium with density ne the difference ∆ne(xt(z)) vanishes and the total
DM is

DMt = DM0 + ne(vp‖ − ve‖)t (uniform medium) (16)

and its time derivative is
dDM

dt
= ne(vp‖ − ve‖). (17)

For a constant electron density, dDM/dt is proportion to the parallel velocity difference. An esti-
mate of dDM/dt assuming a fiducial relative velocity of 100 km s−1 and an ionized gas density of
0.1 cm−3 is

dDM

dt
≈ 10−5 v100ne0.1 pc cm−3 yr−1 (18)

2.3 Electron Density Variations on Large Length Scales

For a medium with changes in density only on large length scales� |vp‖−ve‖|t, the derivative still
depends only on parallel velocities,

dDM

dt
= ne(xp0)vp‖ − ne(xe0)ve‖ . (19)

Eq. 19 indicates that changes in DM are affected by the electron density on both ends of the LOS.
For similar electron densities, we expect the pulsar term to dominate because pulsar velocities
are typically much larger than the Earth’s orbital motion and the Sun’s peculiar motion relative
to the Local Interstellar Cloud (LIC), about 23 km s−1. There will be exceptions, of course, for
pulsars with low velocities or with small parallel velocity components. The Earth’s orbital motion
is not relevant for this calculation because the Earth resides inside the heliosphere. However, if
we include the interplanetary medium in the analysis (either explicitly here or separately as an
additional non-ISM term), the Earth’s velocity will of course matter.

The Earth term raises the interesting possibility that DM variations are partially correlated be-
tween different lines of sight with an angular dependence that depends on the local ISM and on the
direction of the Sun’s peculiar velocity. The heliospheric wake is estimated to be ∼ 103 AU long
and with a density∼< 0.05 cm−3 (Frisch 2007) that could provide δDM ∼multiples of 10−4 pc cm−3

in some directions.

The motion of the Sun through the local interstellar cloud (LIC) may be particularly interesting.
The relative motion of the Sun and LIC is about 23 km s−1 based on measurements from the
Interplanetary Background Explorer (IBEX) mission. The LIC is about 9.2 pc across and has an
internal gas density of 0.3 cm−3 at a temperature of 6000 K. Assuming complete ionization, the
total DM through the cloud is DMLIC ≈ 3 pc cm−3 and the maximum derivative is

dDM

dt
≈ 0.7× 10−5 pc cm−3 yr−1. (20)
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2.4 Large and Small Electron Density Variations

Because the ionized ISM contains a wide range of length scales, the term in Eq. 15 involving
∆ne(xt) also needs to be considered. Its contribution to DM is

δDMt =

∫ zp0

ze0

dz ∆ne(xt(z)). (21)

Typical scales transverse to the LOS are |r| ∼ v⊥t ∼ 20 AU v⊥100tyr. The relevant velocity veff⊥(z)
is largest at the pulsar position (c.f. Eq. 9) for cases where the proper-motion velocity is larger than
the Earth’s velocity. Elsewhere along the line of sight and for slowly moving millisecond pulsars,
the transverse scale can be substantially smaller.

DM varies according to

DMt = DM0 +
[
ne(xp0)vp‖ − ne(xe0)ve‖

]
t +

∫ zp0

ze0

dz ∆ne(xt(z)). (22)

Linear trends in DMt have been recognized for many years and it is not a priori obvious whether
they should be associated with the explictly linear term in Eq. 22 or with the third term, which may
quantify gradients transverse to the line of sight.

2.4.1 Structure Function of DM

The DM structure function,

DδDM(τ) =
〈
[DMt+τ −DMt]

2〉 , (23)

includes the effects of the systematic DM term due to the change in distance as well as the term
involving the integrated difference ∆ne(xt). Discrete structures on AU scales can contribute to
∆ne(xt) (see below). Together, these and the changing distance will produce contributions to the
structure function that are quadratic in τ . For the case where only the distance-change term is
relevant, DMt+τ −DMt ∝ τ , it is easy to show that the structure function is

DδDM(τ) =
[
ne(xp0)vp‖ − ne(xe0)ve‖

]2

τ 2. (24)

A general feature of structure functions is that they are quadratic when the lag τ is smaller than any
characteristic time scale in the time series. So for structures in the ISM with scale sizes ` of tens of
AU that have characteristic crossing times `/Veff ∼ many years, quadratic structure functions will
be seen for lags of a few years or less.

For cases where the systematic term is significant, the time series for DM could be de-trended be-
fore calculating the structure function. Kolmogorov fluctuations will produce a non-quadratic scal-
ing for the structure function∝ t5/3 and will scale differently for other slopes of the electron density
wavenumber spectrum as long as the spectral index β < 4 (as defined below). Equivalent to other
discussions in the literature, when a power-law wavenumber spectrum dominates electron-density
variations the structure function is essentially the structure function of δDMt given in Eq. 21.
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2.4.2 Discrete Structures

There is evidence for individual structures in the ISM on AU scales based on refraction effects
in pulsar dynamic spectra, extreme scattering events, and intraday variable sources. These are
likely confined to a small fraction of the LOS and will produce maximum contributions to DM of
order 10−5ne`AU pc cm−3 where `10AU is the path length through the structure. The time scale for
changes depends on the density, size, and velocity of the structure so the derivative dDM/dt can be
comparable to or much smaller or larger than the contribution from the changing distance analyzed
in the previous subsection.

Clumps: Consider a single ionized cloud that has scales a‖ and a⊥ parallel and transverse to the
LOS and with a column density DMc = Nec through the cloud along the LOS. The maximum phase
change due to the clump is φc ∼ λreNec and the dispersion delay is

∆tDMc =
φc

2πν
=
λ2reNec

2πc
. (25)

The phase gradient across the LOS is then |∇⊥φ| ∼ λreNec/a⊥ and the refraction angle is

θrc =
λ|∇⊥φ|

2π
∼ λ2reNec

2πa⊥
∼ c∆tDMc

a⊥
. (26)

There are two time delays introduced by refraction into barycentric arrival times. The first is as-
sociated with the translation of topocentric TOAs by the propagation delay from the geocenter to
the solar system barycenter. The direction to the pulsar is a key part of the translation. Chromatic
refraction causes the angle of arrival to differ from an assumed direction, implying a delay (Foster
& Cordes 1990) that varies sinusoidally with an annual period and an amplitude

∆tbaryc ∼
r⊕θr
c
∼
(
r⊕
a⊥

)
∆tDMc ∼

∆tDMc

a⊥AU

, (27)

where r⊕ = 1 AU. The second delay is the geometric increase in propagation path that is roughly

∆tgeoc ∼
Dθ2

r

2c
∼ cD(∆tDMc)

2

2a⊥2
∼ cD(∆tDMc)

2

2r2
⊕

(
∆tDMc

a⊥AU

)2

. (28)

For a single clump, Eqs. 27 and 28 indicate that ∆tbaryc and ∆tgeoc are linear and quadratic, respec-
tively, in the dispersion delay, ∆tDMc. The scaling laws in these equations are consistent with those
that can be derived from a more exact analysis of a Gaussian plasma lens (Clegg et al. 1998). The
barycentric and geometric delays are comparable for pulsars within about 1 kpc because θr ∼ 1 mas
and Dθr ∼ 1 AU, though there are wide variations of these values.

Numerically, the refraction and dispersion delays are comparable for nominal parameter values but
any one of the three can dominate the the other two for reasonable distances and transverse scale
lengths,

∆tbaryc ∼ 1 µs

(
∆tDMc,µs

a⊥AU

)
, (29)

8



10−3

10−2

0.1

1

10

∆
t b

ar
y

(µ
s)

a⊥ = 1 AU

a⊥ = 10 AU

10−2 0.1 1 10

∆tDM (µs)

10−3

10−2

0.1

1

10

∆
t g

eo
(µ
s)

Figure 3: Refraction delays plotted against DM delay from a single cloud. (Top) The barycentric delay for two clump
scale sizes, as labeled. (Bottom) The geometric delay for the same two clump sizes.

and

∆tgeoc ∼ 0.2 µsDkpc

(
∆tDMc,µs

a⊥AU

)2

. (30)

Figure 3 shows ∆tbaryc and ∆tgeoc plotted against ∆tDMc for D = 1 kpc and for two transverse
scale lengths (a⊥ = 1 and 10 AU).

A final consideration is multiple imaging. Clegg et al. (1998) analyze flux variations and caustics
for a Gaussian lens. The focal distance Df of a clump is the minimum distance from the clump at
which rays can cross,

Df ∼
a⊥
θrc
∼ a⊥2

c∆tDMc

∼ 2.4 kpc a⊥
2
AU∆tDMc,µs. (31)

We therefore do not expect ray crossing and multiple images from nearby pulsars unless a clump
is small and dense.

Wedges: (Backer et al. 1993) proposed that plasma wedges are responsible for linear trends in
DM(t). A plasma wedge has linearly increasing column density Ne(x) transverse to the LOS. As
the line of sight moves across it, DM(t) will change linearly until the wedge boundary is reached,
if there is one. The wedge will also refract by a constant refraction angle. Unlike other structures,
however, a wedge of this type will have zero transverse second derivative (except at the boundaries)
and therefore will not cause changes in measured flux density.

Electron-density slabs: DM(t) time series from pulsars show a combination of linear trends,
stochastic variations, and, in a few cases, fast changes in slope that are both positive and nega-
tive. Apparent slope changes can appear in particular realizations of a stochastic process with a
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red power spectrum. But they can also result from slab-like structures if they are suitably oriented
relative to the LOS and the pulsar’s velocity. Such slabs may represent static increases and deficits
over the local mean electron density that contribute as the LOS of changes with time. Alternatively,
they could be time-dependent owing to shock motions through neutral gas. Bow shocks produced
by the pulsars themselves may ionize atomic (and, less likely, molecular) structures as they move
through the ISM.

So far, the cases considered have assumed that ISM structures are static. However, the pulsar
can actively modify its local environment. An extreme case is where the pulsar’s motion toward
the observer takes it through atomic hydrogen (HI) structures on scales of tens of AU and larger,
including filaments, (e.g. Stanimirović et al. 2007; Gibson 2007; McClure-Griffiths et al. 2007). As
the pulsar nears a filament, it will ionize the atomic gas through a combination of radiation from
the neutron star and magnetosphere and shock heating. The standoff radius of the bow shock is
given by balance of ram pressure and the pulsar’s relativistic wind,

rs =

(
Ė

4πρv2
pc

)1/2

≈ 266 AU Ė
1/2
33 n

−1/2
H v−1

p100
(32)

for Ė = 1033Ė33 erg s−1, a pulsar velocity in units of 100 km s−1, and an effective hydrogen
density nH cm−3. For the ranges of pulsar velocities, energy-loss rates (Ė) and ISM densities, the
standoff radius of the bow shock is tens of AU to∼ 0.1 pc. Therefore, DM(t) can show temporary
increases even though the prevailing trend would be a decrease because of the decreasing distance.

The effects of different geometries include:
Transverse motion (vp‖ = 0): For a density enhancement that is aligned with the LOS,
DMslab(t) will consist of a positive-going ‘pulse’ with duration equal to the pulsar
travel time across the slab thickness. For a density deficit (e.g. from encountering
a slab of atomic gas), the pulse will be negative going. Figure 4 shows examples of
DM(t) for transverse motion and an interleaved sequence of three density deficits and
two enhancements that produce a train of pulses in DM(t). To first order, the pulsar
distance does not change so the unperturbed DM is constant in time. slab with long
dimension along the LOS:

Pulsar velocity component along the LOS (vp‖ 6= 0) and aligned slabs: When the
density slabs are aligned with the LOS, DM(t) again show square-wave type pulses.
Figure 5 shows DM(t) for a case where the pulsar travels through the slabs and another
where it does not. The prevailing trend is for DM(t) to decrease as the pulsar distance
gets smaller, but this is interrupted by the density deficits and enhancements.

Pulsar velocity component along the LOS (vp‖ 6= 0) and slanted slabs: When the
density slabs are slanted from the LOS, DM(t) can show a saw-tooth pattern where
it has a larger slope than the prevailing trend or a slope with opposite sign. Figure 6
shows DM(t) for a case where the pulsar travels through the slabs and another where it
does not. As with Figure 5, the prevailing trend is for DM(t) to decrease as the pulsar
distance gets smaller, but this is interrupted by the density deficits and enhancements.

Pulsar velocity toward the observer (vp⊥ = 0): Figure 7 shows a case where the pulsar
ionizes atomic hydrogen (blue boxes) as it passes into the box and schematically shows
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Figure 4: Schematic change in dispersion measure due to line of sight sampling of interleaved electron-density
deficits (white boxes) and enhancements (blue boxes). These cases are for pure transverse motion of the pulsar for
which there is no prevailing trend of DM(t). (Left) Density slabs aligned with the line of sight. (Right) Density slabs
at an angle of 30◦ from the LOS.
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Figure 5: Schematic change in dispersion measure due to line of sight sampling of interleaved electron-density
deficits and enhancements. These cases are for pulsar motion with a component toward the observer (i.e. 80◦ from the
LOS direction). The prevailing trend is for DM(t) to get smaller with time. (Left) Pulsar motion through the density
slabs. (Right) Density slabs far from both observer and pulsar.

how increases in DM can occur even if the pulsar moves toward the observer and the
prevailing trend is for a declining DM.

2.4.3 Spectrum of Electron-Density Variations

Consider a Kolmogorov-like spectrum of the form

Pδne(q) = C2
n q−β, q0 ≤ q ≤ q1 (33)

where the scattering irregularities are isotropic and the spectrum depends only on the magnitude
of the wavenumber. Evidence exists for anisotropic scattering but the analysis is accordingly more
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Figure 6: Schematic change in dispersion measure due to line of sight sampling of interleaved electron-density
deficits and enhancements. These cases are for pulsar motion with a component toward the observer (i.e. 80◦ from
the LOS direction) and with slanted density slabs. The prevailing trend is for DM(t) to get smaller with time. (Left)
Pulsar motion through the density slabs. (Right) Density slabs far from both observer and pulsar.
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Figure 7: Motion of pulsar along line of sight toward observer. In this case, white boxes are density deficits while
blue boxes represent density enhancements of atomic hydrogen that is ionized if the pulsar is in the box. The prevailing
trend is for DM(t) to get smaller with time.

tedious. The Kolmogorov case corresponds to β = 11/3. For β > 3 and q0 � q1, the rms electron
density is dominated by the largest scales. Defining the inner and outer scales (i.e. the smallest and
largest scales) as `1 and `0, the wavenumber cutoffs are q0 = 2π/`0 and q1 = 2π/`1. For `1 � `0

and using a Kolmogorov spectrum, the rms electron density is

nerms
≈ [3(2π)1/3]1/2

(
C2

n

)1/2
`

1/3
0 . (34)

While the ISM seems to be described by outer scales that are quite large (∼ 1 to 100 pc except in
dense, compact regions), for the calculation here we use a scale of order the separation of the lines
of sight over times up to 10 yr (e.g. tens of AU or less). Using C2

n = 10−3.5 m−20/3 as a typical
value in the vicinity of the Sun and a fiducial scale `0 = 1 AU, the rms electron density is

nerms
≈ 2.2× 10−4 cm−3 `

1/3
0,AUC2

n−3.5
. (35)
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By comparison, an outer scale of L = 1 pc yields nerms
≈ 0.013 cm−3.

For an extended medium, the number of independent fluctuations along the LOS at a given scale is
N(`) ≈ ηD/`, where η is the LOS filling factor. For the warm ionized medium, the filling factor
is estimated to be η ∼ 0.1 to 0.2. The integrated δne is a random walk with N(`) steps, yielding a
sum that has a total rms value

ne
total
rms

= N1/2(`)nerms
(`) ∝ (ηDC2

n)1/2`
−1/6
0 . (36)

The corresponding DM variation is

δDM = ne
total
rms

`0 ∝ (ηDC2
n)1/2`

5/6
0 , (37)

which is largest for larger scales `0. Estimated values for C2
n in the literature are based on LOS

averages, so they already incorporate the filling factor We then can make the replacement SM =
ηDC2

n. The relevant scales are those that correspond to the transverse separation of the LOS at
times t = 0 and t > 0. This separation varies along the line of sight but it is useful to consider a
typical value. As discussed below, scattering causes any single-epoch measurement of DM to result
from spatial averaging over the ISM. For the value of C2

n considered above and for a kpc distance,
a typical scattering angle ∼ 1 mas corresponds to a ∼ 1 AU smoothing scale. This implies that the
smallest scales will be averaged over1 sufficiently to not contribute less than otherwise to significant
variations of DM with epoch. The relevant scales are then expected to be ∼ 1 to 10 AU and for a
kpc distance and AU scales, we have

δDM = 1.6× 10−5 pc cm−3
(

DkpcC
2
n−3.5

)1/2

`
5/6
0,AU. (38)

We therefore expect the random component of DMt to grow with time ∝ t5/6 because the LOS
separation grows linearly with t. This is consistent with expressions for the DM structure function,
whose square root scales as t5/6.

The DM structure function from the random component in Eq. 21 is, for an arbitrary wavenumber
spectrum,

DδDM(τ) = 2

∫ zp0

ze0

dz

∫
dq⊥ Pδne(q⊥ , qz = 0, z)

(
1− eiq⊥ ·veff⊥ (z)τ

)
. (39)

For an isotropic wavenumber spectrum, this becomes

DδDM(τ) = 4π

∫ zp0

ze0

dz

∫
dq⊥q⊥ Pδne(q⊥, qz = 0, z) [1− J0(q⊥Veff⊥(z)τ)] . (40)

and for the power-law wavenumber spectrum of Eq. 33,

DδDM(τ) = 8π2fβ

∫ zp0

ze0

dzC2
n(z) [Veff⊥(z)τ ]β−2 (41)

1Note that ‘averaging’ is the correct term here, rather than summing, because the effects of scattering can be
described as angular averaging using a function with unit area.
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where (Cordes & Rickett 1998, Eq. B6)

fβ =
8π2

(β − 2)2β−2

Γ(2− β/2)

Γ(β/2)
. (42)

The numerical factor is f11/3 = 88.3 for a Kolmogorov wavenumber spectrum with β = 11/3

Details of derivation:

The DM difference DMt −DM0 given by Eq. 21 has a mean-square value that is the structure function
for a lag τ = t because we assume that stationary statistics apply. Using ∆ne(xt(z)) defined in Eq. 11,
the mean-square is

〈
(δDMt)

2
〉

=

zp0∫∫

ze0

dz dz ′ 〈∆ne(xt(z))∆ne(xt(z ′)).〉 (43)

Expanding the integrand and taking into account that the mean electron density subtracts out, there are
four terms, the most general one being

I =

zp0∫∫

ze0

dz dz ′ 〈δne(xt(z))δne(x0(z ′))〉 , (44)

The integrand depends on only the spatial difference

δxt(z, z
′) = xt(z))− x0(z ′) = (z − z ′)ẑ + veff⊥(z)t. (45)

Changing variables to z+ = z + z ′/2 and z− = z − z ′ this becomes

δxt(z, z
′) = z−ẑ + veff⊥(z+ + z−/2)t. (46)

Writing the autocorrelation function Rδne
(δx) of δne(x) in terms of the wavenumber spectrum,

Rδne
(δx) =

∫
dqPδne

(q)eiq·δx, (47)

we have, using D0 = zp0 − ze0 ,

It =

∫ zp0

ze0

dz+

∫ D0

−D0

dz−

∫
dqPδne

(q)eiq·[z−ẑ+veff⊥ (z++z−/2)t] (48)

The integral over z− is over a range that is twice the distance to the pulsar, which we assume exceeds
the outer scale of the wavenumber spectrum by many orders of magnitude. This yields to good approx-
imation a delta function

∫ D0

−D0

dz− e
iq·[z−ẑ+veff⊥ (z++z−/2)t]

= δ(qz + q⊥ ·∆v⊥t/2(zp − ze))eiq⊥ ·veff⊥ (z+)t. (49)

Integrating over qz then yields

It =

∫ zp0

ze0

dz+

∫
dq⊥ Pδne

(q⊥ , qz = −q⊥ ·∆v⊥t/2(zp − ze))eiq⊥ ·veff⊥ (z+)t. (50)
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The integral can be simplified further by recognizing that the qz argument of Pδne
(q⊥ , qz) is much

smaller than |q⊥ | by roughly a factor of 10−7, so we set qz = 0 and get

It =

∫ zp0

ze0

dz+

∫
dq⊥ Pδne

(q⊥ , 0)eiq⊥ ·veff⊥ (z+)t. (51)

The structure function is then twice the difference between I0 and It,
〈

(δDMt)
2
〉

= 2(I0 − It) = 2

∫ zp0

ze0

dz+

∫
dq⊥ Pδne

(q⊥ , 0)
[
1− eiq⊥ ·veff⊥ (z+)t

]
. (52)

When the wavenumber spectrum describes isotropic irregularities, we use dq⊥ = dφ dq⊥ q⊥ and allow
the spectrum to be variable along the LOS on scales larger than the outer scale to get

〈
(δDMt)

2
〉

= 2

∫ zp0

ze0

dz+

∫
dq⊥ q⊥Pδne

(q⊥, 0, z+) [1− J0(q⊥Veff⊥(z+)t)] . (53)

For the power-law spectrum of Eq. 33, this becomes
〈

(δDMt)
2
〉

= 4π

∫ zp0

ze0

dz+ C2
n(z+)

∫ q1

q0

dq⊥ q⊥
1−β [1− J0(q⊥Veff⊥(z+)t)] . (54)

For offsets 2π/q0 � Veff⊥(z+)t � 2π/q1, the wavenumber integral gives the standard scaling ∝
[Veff⊥(z+)t]β−2. The full expression for this regime is given in Eq. 41.

2.5 Published DM Variations: A Quick Summary and Suggested Analyses

Published time series of DM in the literature show several types of behavior. Some show linear
trends with superposed correlated variations, while others show only correlated variations without
an obvious trend. A few show piecewise linear variations that signify change points in the time
derivative dDM/dt associated with structure in the ISM on scales of 1-100 AU.

Interpretation of DM time series involves:

1. DM time series will generally include linear trends along with stochastic variations from
density variations on a wide range of scales (e.g. Kolmogorov-like variations). Before using
DM(t) to infer the properties of stochastic variations, the trends need to be removed. If they
are not, the DM structure function will be contaminated by a square-law component that will
cause the spectral index of the wavenumber spectrum (β) to be overestimated.

2. Estimates of DM will be contaminated by other chromatic timing effects that result from
refraction and multipath propagation. As shown by (Foster & Cordes 1990), if refraction is
allowed to contaminate DM estimates, the structure function will show excess amplitude on
long times compared to extrapolation from the diffraction time scale and will also lead to an
overestimated wavenumber spectral index.

3. Disentangling the effects of changing distance and changing line of sight from parallel and
transverse motion, respectively, is possible if scintillation parameters (including flux density)
are also measured. The change in distance over a few years will have no effect on these
parameters whereas transverse gradients will.

B1937+21: The DM time series shows a long-term trend. Ilyasov et al. (2005) and Ramachandran
et al. (2006) show a 20-year time series extending to ∼ 2003.5 (MJD 52800) that has a strong

15



decreasing trend with an average derivative dDM/dt ≈ −1.14± 0.03× 10−3 pc cm−3 yr−1. Long-
term correlated variations are superposed with this trend.

B1821−24: Cognard & Lestrade (1997, see also Backer et al. (1993)) show a DM time series with
a long-term increasing trend with dDM/dt ≈ 0.005 pc cm−3 yr−1 over a six-year period.

Keith et al. (2013, see also You et al. (2007)) give DM(t) time series over ∼ 6 yr for 20 millisec-
ond pulsars that are monitored in the Parkes Pulsar Timing Array. Of these, 11 show prevailing
trends of increasing DM (J1024−0719, J1730−2304, J1732−5049, and J1857+0943) or decreas-
ing DM (J1045−4509, J1600−3053, J1643−1224, J1744−1134, J1909−3744, J1939+2134 and
J2129−5721). Two others show overall trends but with a localized DM ‘event’ that breaks the
trend (J1603−7202 and J1824−2452). The remaining seven objects show non-monotonic varia-
tions with various degrees and time scales of temporal correlation. The approximate derivative for
J1939+2134 (B1937+21) is about half the value of the 20-yr trend reported by Ramachandran et al.
(2006), and is consistent with changes in slope seen in the 20-yr time series.

Demorest et al. (2013) present DM(t) time series for 14 out of 17 pulsars that were timed. Of these,
the seven objects that overlap with the (Keith et al. 2013) sample show consistent trends. Several
objects show very weak DM variation while two, B1855+09 and J2317+1439, show strong trends
superposed with correlated variations.

Phillips & Wolszczan (1991) report results on five pulsars, four of which show long-term trends
with slopes |dDM/dt| ∼ 10−3 pc cm−3 yr−1 (increasing: B0823+26, B0834+06, and B1237+25;
decreasing: B0919+06). They assert that the rms DM variations are correlated with the average
DM but with significant scatter about a best fit relation σDM ∝ DM1.3±0.3. A trend of this type
would generally signify that the DM variations are associated with accumulated effects along the
line of sight, but the correlation is affected by the long-term trends that may be due to parallel
motion through ionized gas near the pulsars.

Are the long terms trends seen in more than half of the pulsars due predominantly to parallel or
transverse motion?

B1534+12: Fonseca et al. (2014) present DM(t) for the relativistic binary B1534+12 and fit for
derivatives dDM/dt in five separate time blocks. The overall trend is a decrease with time that
is interrupted by episodic flattenings or increases in DM. The time series is remarkably similar to
those shown in Figure 6, suggesting that there are interleaved density structures along the LOS.
Contemporaneous scintillation parameters and the pulsar’s flux density would be valuable for test-
ing whether the DM time series is at all contaminated by diffraction and refraction effects.

Some possible projects:

1. Analyze published DM time series to test the fraction of pulsars for which changing distances
are mostly responsible. Increasing and decreasing trends should occur with equal probability,
on average. Where possible, scintillation parameters and flux densities can be used to discern
the role, if any, of diffraction and refraction.

2. Ditto for NANOGrav time series.

16



3. Numerical modeling of dispersion, refraction, and diffraction to help identify ISM struc-
ture shapes needed to account for cases where trends are not monotonic and where a pure
stochastic process is an insufficient explanation.

4. Investigation of additional ISM tracers along pulsar LOS, including free-free and Hα emis-
sion, recombination lines, strong Faraday rotation, and optical absorption lines.

5. Modeling of the solar system’s bow shock and heliosphere-ISM boundary to assess whether
time-variable contributions to pulsar DMs are significant and at all correlated between differ-
ent LOS.
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3 Frequency Dependent Dispersion Measures from Phase-screen Averaging

p

o

ν ′

ν

Ds

D ′ = D −Ds

p

o

ν

ν ′
D

Figure 8: Scattering geometries for scattering from a thin screen (left) and filled medium (right). The pulsar-observer
distance is D. Solid lines show ray paths at frequency ν that represent the characteristic width of the ray-path bundle
and dashed lines are for frequency ν ′ < ν. The thin screen is at a distance Ds from the pulsar (p) and D′ from the
observer (o). For the filled medium the curved lines represent twice the rms ray-path deviation from the direct ray for
a medium filled with statistically-homogeneous plasma variations. Three electron density slices are shown.

This section takes an approach where diffraction and refraction are both described by a wavenumber
spectrum for electron density variations2.

The following definitions are used here and in the next section. The pulsar-Earth distance is D,
the pulsar-screen distance is Ds, and D′ = D − Ds. Vectors transverse to the line of sight are
xo in the observer’s plane, x in the screen plane, and xs in the source plane. Figure 8 shows the
geometry and schematic ray paths for frequencies ν and ν ′ < ν for both a thin screen and with a
thick medium.

The screen phase φ is related to the electron density by

φ(x) = −λre
∫

screen

dz ne(x, z) ≡ −λreNe(x), (55)

where re is the classical electron radius and the second equation defines the column density Ne(x).
In this section we consider the electron density to have a wide range of scales described by a
wavenumber spectrum Pδne(q). The measured DM at a given frequency is related to how scattered
rays that reach the observer sample the dispersing plasma. At low frequencies the sampled volume
is larger so the column density will be different than at high frequencies.

Again, we analyze a thin screen for simplicity and define an averaging function Aν(x) that has unit
area,

∫
dxAν(x) = 1. As in the previous section, a suitable averaging function is the normalized

2The calculation is very similar to the one in Appendix C of Cordes & Shannon (2010), but more explicitly compares
the measureable DM values at two frequencies. The resulting scaling law is very similar but easier to interpret in this
new approach.
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scattered image. The scattering-averaged DM is

DMν =

∫
dx′Aν(x

′)Ne(x
′). (56)

The averaging function alters the time variations of DM. At high frequencies, the variations will
generally be faster because the smoothing length is smaller but the amount of variation depends on
the wavenumber spectrum.

We assume the electron density has the form of a local mean and a fluctuating part, n̄e + δne(x).
The mean contributes to the mean DM and is subtracted out in our analysis. For the fluctuating
part, we use the power-law spectrum of Eq. ?? where the irregularities are isotropic. In this case,
the the scattered image is symmetric.

We want to quantify the difference in DM between two frequencies, ν and ν ′. The best statistic for
this purpose is the mean-square difference (the structure function),

DδDM(ν, ν ′) =
〈[
δDMν − δDMν ′

]2〉

=
〈
(δDMν)

2
〉

+
〈
(δDMν ′)

2
〉
− 2

〈
δDMνδDMν ′

〉
. (57)

The reasoning is as follows. The mean-square of DMν includes all of the power in the wavenum-
ber spectrum from the lowest wavenumber q0 to the wavenumber corresponding to the smoothing
length, qs ≈ 2π/D′θdν . The low wavenumbers will produce time variations in DM on very long
time scales up to a million years or longer. We are concerned with much shorter time scales and
wavenumbers that correspond to them.

Each of the three terms in Eq. 57 can be calculated from the DM cross correlation,

CδDM(ν, ν ′) =
〈
δDMνδDMν ′

〉

=

∫∫
dxdx′Aν(x

′)Aν(x
′′)

∫∫
dz ′dz ′′ 〈δne(x′, z)δne(x′′, z′)〉. (58)

In general the electron-density correlation is

〈δne(x′, z)δne(x′′, z′)〉 =

∫
dqPδne(q)ei(q⊥·(x

′−x′′)+qz(z′−z′′). (59)

Thin screen geometry is invoked assuming that the screen thickness ∆z � q−1
0 and that Pδne does

not change with z, so that
∫∫

dz ′dz ′′ ei(qz(z′−z′′) = ∆zδ(qz). (60)

Then

CδDM(ν, ν ′) = ∆z

∫∫
dxdx′Aν(x

′)Aν(x
′′)

∫
dq⊥ Pδne(q⊥)eiq⊥·(x

′−x′′). (61)
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With a change of variables to x = (x′ + x′′)/2 and δx = x′ − x′′ for which dx′dx′′ = dxdδx and
defining the cross-correlation

CA(δx; ν, ν ′) =

∫
dδxAν(x+ δx/2)Aν ′(x− δx/2), (62)

Eq. 61 becomes

CδDM(ν, ν ′) = ∆z

∫
dq⊥ Pδne(q⊥)

∫
dδx eiq⊥·δxCA(δx; ν, ν ′). (63)

Recognizing the second integral as the Fourier transform of CA,

C̃A(q⊥; ν, ν ′) =

∫
dy eiq⊥·yCA(y; ν, ν ′), (64)

we have

CδDM(ν, ν ′) = ∆z

∫
dq⊥ Pδne(q⊥)C̃A(q⊥; ν, ν ′). (65)

The effect of the smoothing function is to limit the range of wavenumbers contributing to the DM
cross correlation.

Now, using the DM cross correlation we can evaluate the structure function defined in Eq. 57,

DδDM(ν, ν ′) =
〈
(δDMν)

2
〉

+
〈
(δDMν ′)

2
〉
− 2

〈
δDMνδDMν ′

〉

= CδDM(ν, ν) + CδDM(ν ′, ν ′)− 2CδDM(ν, ν ′)

= ∆z

∫
dq⊥ Pδne(q⊥)

[
C̃A(q⊥; ν, ν) + C̃A(q⊥; ν ′, ν ′)− 2C̃A(q⊥; ν, ν ′)

]
.(66)

3.1 Estimate for a Power-law Wavenumber Spectrum

To get an estimate for the two-frequency DM cross correlation, a circularly symmetric Gaussian
function is assumed for the smoothing function Aν(x),

Aν(x) = (2πσ2
ν)
−1e−x

2/2σ2
ν . (67)

The two-frequency cross correlation of Aν(x) is

CA(δx; ν, ν ′) =
[
2π(σ2

ν + σ2
ν ′)
]−1

e−(δx)2/2(σ2
ν+σ2

ν ′ ) (68)

and its Fourier transform is

C̃A(q⊥; ν, ν ′) = e−q⊥
2(σ2

ν+σ2
ν ′ )/2. (69)

The DM cross correlation is then

DδDM(ν, ν ′) = ∆z

∫
dq⊥ Pδne(q⊥)

[
e−(q⊥σν)2

+ e−(q⊥σν ′ )
2 − 2e−q⊥

2(σ2
ν+σ2

ν ′ )/2
]
. (70)
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Recognize σ−1
ν , σ−1

ν ′ , and
√

2(σ2
ν + σ2

ν ′)
−1/2 as the approximate cutoffs in the integrals for each of

the three terms.

Now we adopt the power-law wavenumber spectrum of Eq. 33 whose dependence on only the
magnitude of the wavenumber is consist with the assumed symmetry of the smoothing function.
Assuming the approximate cutoffs from the smoothing functions are all between q0 and q1, each
term yields

∫ qc

q0

dq⊥ Pδne(q⊥) = 2πC2
n

∫ qc

q0

dq⊥ q⊥
1−β =

2πC2
n

β − 2

(
q2−β

0 − q2−β
c

)
. (71)

The integral is dominated by the term involving q0 � qc for β > 2 but in the expression for
DδDM(ν, ν ′), the three terms involving q0 cancel.

Defining the screen scattering measure as SM = ∆zC2
n, the two-frequency correlation is

DδDM(ν, ν ′) =
2πSM

β − 2

[
2(4−β)/2

(
σ2
ν + σ2

ν ′
)(β−2)/2 − σβ−2

ν − σβ−2
ν ′

]
. (72)

Further simplification can be made by recognizing that σν = D′θdν is the length scale on the screen
corresponding to the observed diffraction (or scattering) angle θdν . The scattering angle scales with
frequency as θdν ∝ ν−β/(β−2). Using this frequency scaling and using ν as a reference frequency,
the two-frequency DM correlation becomes

DδDM(ν, ν ′) =
2πSM

β − 2
(D′θdν )

β−2
Fβ(ν/ν ′), (73)

where the frequency scaling function Fβ(x) is defined as

Fβ(x) = 2(4−β)/2
[
1 + x2β/(β−2)

](β−2)/2 − xβ − 1. (74)

This function vanishes for x = 1 as expected.

For a Kolmogorov screen with β = 11/3,

DδDM(ν, ν ′) =
6πSM

5
(D′θdν )

5/3
F11/3(ν/ν ′). (75)

the scaling function is F11/3(2) = 1.115 for a 2:1 frequency range such as ν = 1.6 GHz and
ν ′ = 0.8 GHz. Figure 9 shows Fβ(x) for 1 ≤ x ≤ 5. Eq. 73 is written assuming that the fiducial
frequency is the larger frequency (ν ≥ ν ′), so that the function Fβ is defined for arguments x ≥ 1.

3.1.1 DM changes in terms of SM and scattering angle

Evaluating Eq. 73 using fiducial values D′ = 1 kpc, θdν = 1 mas, and SM = 10−3.5 kpc m−20/3 we
obtain

DδDM(ν, ν ′) = 3.5× 10−10 (pc cm−3)2

(
SM

10−3.5 kpc m−20/3

)
(D′kpcθdν ,mas)

5/3
F11/3(ν/ν ′). (76)
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Figure 9: Plot of the frequency scaling function for a Kolmogorov spectrum F11/3(x).

Expressing this as a DM difference by taking the square root, we have

δDM(ν/ν ′) = 1.9× 10−5 (pc cm−3)

(
SM

10−3.5 kpc m−20/3

)1/2

(D′kpcθdν ,mas)
5/6
F

1/2
11/3(ν/ν ′). (77)

We can evaluate the TOA difference associated with this difference in DM, but there is a depen-
dence on the choice of frequency. Using the higher frequency ν (in GHz), the TOA difference
is

∆t(ν/ν ′) = 4.15 ms ν−2δDM(ν/ν ′)

= 78 ns

(
SM

10−3.5 kpc m−20/3

)1/2

(D′kpcθdν ,mas)
5/6

ν−2F
1/2
11/3(ν/ν ′). (78)

NB: the scattering angle θdν in these equations is the ‘σ’ of a Gaussian smoothing function. It
would be better to use the FWHM; this replacement will be done in a future version.

3.1.2 δDM in terms of SM only

The diffraction angle is not an independent quantity because it depends on SM ν, and the screen
distance Ds. It can be found by setting the phase structure function at the observer’s location equal
to 2 rad2, corresponding to the 1/e half-width of the visibility function, and relating the so-obtained
length scale to the width of the scattered image (Coles et al. 1987, Eq. 1-8; Cordes & Rickett 1998,
Appendix B). The full width at half maximum (FWHM) scattering diameter is given by

θdν (FWHM) =
2(β−3)/(β−2)

√
ln 2

π

(
Ds

D

)(
fβr2

e

)1/(β−2)
λβ)/(β−2)SM1/(β−2) (79)
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where (Cordes & Rickett 1998; Eq. B6)

fβ =
8π2

(β − 2)2β−2

Γ(2− β/2)

Γ(β/2)
. (80)

For a Kolmogorov medium f11/3 = 88.3 and the scattering diameter is

θdν (FWHM) = 1.02 mas ν−11/5

(
SM

10−3.5 kpc m−20/3

)(
Ds

D

)
. (81)

Now, relating the FWHM to the one-sigma width of a Gaussian function,

θdν (one sigma) =
θdν (FWHM)

2
√

2 ln 2
, (82)

we have from Eq. 73

DδDM(ν, ν ′) =
2πfβc

βr2
e

(β − 2)2β/2

(
D′Ds

D

)β−2

SM2 ν−βFβ(ν/ν ′). (83)

For a Kolmogorov medium we have

DδDM(ν, ν ′) =
6πf11/3c

11/3r2
e

5× 211/6

(
D′Ds

D

)5/3

SM2 ν−11/3F11/3(ν/ν ′) (84)

= 2.72× 10−10 (pc cm−3)2 ν−11/3F11/3

( ν
ν ′

)

×
(
D′kpcDs

D

)5/3(
SM

10−3.5 kpc m−20/3

)2

. (85)

The rms difference is then

δDM(ν, ν ′) = 1.65× 10−5 (pc cm−3) ν−11/6F
1/2
11/3

( ν
ν ′

)(D′kpcDs

D

)5/6(
SM

10−3.5 kpc m−20/3

)
(86)

and the arrival-time difference due to the DM difference evaluated at the higher frequency is

∆tδDM(ν,ν ′)(ν) = 4.15 ms ν−2δDM(ν/ν ′)

= 69 ns ν−23/6F
1/2
11/3

( ν
ν ′

)(D′kpcDs

D

)5/6(
SM

10−3.5 kpc m−20/3

)
. (87)

3.1.3 Interpretation and Caveat

The difference δDM(ν, ν ′) grows with increasing ratio ν/ν ′ (for fixed ν) because the scattering-
averaged DMν ′ random walks away from the value at frequency ν. The growth of the DM differ-
ence is contained in F 1/2

β (ν/ν ′).
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The arrival-time difference ∆tδDM(ν,ν ′)(ν) is the deviation from the normal DM delay at frequency
ν associated with the DM difference DM(ν, ν ′). The deviation at the lower frequency ν ′ is a
factor ν2/ν ′2 larger. In other words, if the TOA and DM are both measured at frequency ν ′, an
extrapolation of the TOA to frequency ν would show a timing offset compared to the TOA actually
measured at frequency ν. This offset is equal to ∆tδDM(ν,ν ′)(ν). Restated again, the pulses at
frequency ν trace a dispersion trajectory that is slightly different from the trajectory at frequency
ν ′.

The calculation undertaken here simply looks at the difference in electron column density that re-
sults from how the ray-path bundle that samples the screen changes with frequency. The calculation
of the arrival-time difference therefore does not take into account additional delays that result from
the ray-path bundle shifting laterally (due to refraction) or changing shape, due to focusing and
defocusing from the screen. These additional effects are analyzed using the second approach in §4.

3.2 Suggested Studies

Results in the literature already suggest that DM values are discrepant for a few pulsars when
different frequency bands or pairs of frequencies are used to estimate them. However, it is not clear
that these are really ‘frequency-dependent DMs’ or instead the result of intrinsic variation of pulse
profiles with frequency. Detailed studies of a few pulsars using simultaneous observations with
wide frequency coverage need to be done where profile evolution and DM variations are both taken
into account. Assuming profile evolution is epoch-independent will help disentangling the various
effects, but intrinsic mode changes and changing pulse broadening from multipath propagation may
add uncertainty to the analysis.

4 Effects of Refraction on Scattering, Scintillation, and Timing

The starting point is the Kirchoff diffraction integral (KDI) that we write in the form

ε(xo, t, ν,xs) = (iλDs)
−1

∫
dx′ eiΨ(xo,t,ν,x,xs) (88)

Ψ(xo, t, ν,x,xs) = φg(xo,x,xs) + φr(x) + φd(x). (89)

Here φg is the geometric ‘kernel’ for the KDI,

φg(xo,x,xs) =
π

λ

(
D−1
s |x− xs|2 +D′

−1|xo − x|2 −D−1|xo − xs|2
)
. (90)

In the following, we consider the observer and source to be on axis with xo = xs = 0 that yields

φg(x) = ανx2 (91)

α =
π

c

D

DsD′
. (92)

The diffraction phase is φd. The refraction phase is written as a quadratic expansion about the
stationary-phase point (SPP) x given by ∂x[φg(xo,x,xs) + φr(x)] = 0,

φr(x) = a+ b · (x− x) +
1

2
(x− x)†C(x− x) (93)
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and where x and b are related as

b = −2ανx (94)

for the quadratic phase model. As required, the total phase is quadratic about the SPP,

φ(x) = φg(x) + φr(x) = a+ αν|x− x|2 +
1

2
(x− x)†C(x− x). (95)

More generally, the refraction phase could have multiple SPPs and an expansion would be needed
around each.

The diffraction phase determines the scattered image shape in the absence of refraction. The scat-
tered image is the Fourier transform of the visibility function Γε(δr) given by the phase structure
function Dφ(δr),

Γε(δr) ≡ 〈ε(x, t, ν,xs)ε∗(x + δr, t, ν,xs)〉 = e−
1
2
Dφ(δr) (96)

Dφ(δr) =
〈
[φd(x)− φd(x + δr)]2

〉
. (97)

The Fourier transform of the visibility function gives the image (with subscript ‘0’ to denote no
refraction),

I0(θ) =

∫
dδr eiθδrΓε(δr). (98)

Let the unrefracted image have a mean-square scattering angle

〈|θ|2〉0 =

∫
dθ |θ|2I0(θ)∫
dθ I0(θ)

≡ σ2
0. (99)

Refraction alters the image, flux density, arrival time, pulse broadening, and scintillation param-
eters. For simplicity, results are given for the case where the scattered image I0(θ) is circularly
symmetric when there is no refraction. We also assume, for simplicity, that ellipses of constant re-
fraction phase in Eq. 93 align with the transverse coordinate axes (x, y). In this case, C, is diagonal
with elements Cx,y

A more general treatment would relax both of these assumptions because there is evidence for
diffraction to be asymmetric and because the refraction phase derives from a stochastic process, the
matrix C will generally not be diagonal. However our goal here is to develop expressions for the
simplest case.

4.1 Image and Flux Density

By consolidating linear and quadratic terms, the refraction-distorted image becomes

I(θ) = I0(G−1
x (θx − θx), G−1

y (θy − θy)), (100)
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where the image centroid is

θ =
x

D′
(101)

and the gains are given by (with k = 2π/λ)

Gx,y =

[
1 +

DsD
′Cx,y

kD

]−1

. (102)

Gains Gx,y > 1 imply that the image is wider in the x, y directions compared to the unity gain case.
While the amplitude of the image is unaltered, the integral over the image is altered by a factor
GxGy, so the flux density F0 without refraction becomes

F = GxGyF0 (103)

4.2 Mean-Square Scattering Angle

We have

〈|θ|2〉 = θ
2

+
1

2

(
G2
x +G2

y

)
σ2

0. (104)

The first term is from the offset of the image from the direct ray path while the mean-square angular
broadening of a point source is given by the second term.

4.3 Mean Time Delay

The group delay is given by 2πτν = ∂ν [φg + φr] and we note that φg ∝ ν and φr ∝ ν−1. The group
delay is a combination of the dispersion delay, the delay associated with the offset of the scattered
image from the direct line of sight by refraction, and the scattering delay.

We average the delay over the scattered and refracted image to obtain

2π〈τν〉 = −νa+
πDD′

cDs

[
θ

2
+

1

2

(
G2
x +G2

y

)
σ2

0

]
. (105)

The first term gives the dispersion delay ∝ ν−2, the second is the geometric delay ∝ ν−4 from
the image centroid, and the third term is the scattering delay altered by wavefront curvature, so we
write

τν = τDMν + τgν + τdν . (106)

The pulse-broadening delay is

τdν =
πDD′

2cDs

(
G2
x +G2

y

)
σ2

0. (107)

In the absence of phase curvature, τdν ∝ ν−4. However, the gains Gx,y are frequency dependent.
For small deviations from unit gain, |Gx,y − 1| � 1, we can write

G2
x,y ≈ 1− cDsD

′

πD

Cx,y
ν
. (108)

Since Cx,y ∝ ν−1, it is clear that the pulse-broadening delay has a term with the conventional
scaling ∝ ν−4 along with a term that scales as ν−6 in this regime.
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4.4 Scintillation Bandwidth

The scintillation bandwidth can be written in terms of the pulse broadening time as

∆νd =
C1

2πτdν
(109)

where C1 ≈ 1 is a constant that depends on the wavenumber spectrum of the electron density
variations and on the location of the scattering screen along the line of sight (and, more generally,
on the thickness of the screen or medium).

The scintillation bandwidth with refraction is related to the value without refraction, ∆νd0, by

∆νd =
∆νd0

G2
x +G2

y

. (110)

4.5 Scintillation Time Scale

The scintillation time scale ∆td can be derived from the phase structure function by solving

Dφ(Veff∆td) = 1, (111)

where the effective velocity includes the transverse components of the individual velocities of the
pulsar, the observer, and the medium (the screen),

Veff = D′Vp +
Ds

D
Vobs −Vm. (112)

The gains Gx,y alter the image’s width so they also change the contours of constant mean-square
phase given by the structure function. If Dφ0 is the phase structure function when there is no
refraction, we generally have

Dφ0

(√
(GxVeffx)

2 + (GyVeffy)
2∆td

)
= 1. (113)

Then the refracted scintillation time is

∆td =
Veff∆td0√

(GxVeffx)
2 + (GyVeffy)

2
. (114)

4.6 Scaling to Different Frequencies

The results in §§4.1 - 4.5 refer to quantities at a particular radio frequency ν. In particular, the ex-
pansions in Eq. 93-95 about a stationary-phase point are specific to the frequency ν. It is straight-
forward to generalize the results to an arbitrary frequency because the geometric phase φg ∝ ν
while the refraction and diffraction phases scale as ν−1. To do so we give subscripts to the SPP
location xν and the expansion quantities aν , bν , and Cν defined previously. Then the phase-screen
expansion in Eq. 93 becomes

φrν(x) = aν + bν · (x− xν) +
1

2
(x− xν)

†Cν(x− xν). (115)
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At another frequency ν ′ we have the equivalent expansion

φrν ′(x) = aν ′ + bν ′ · (x− xν ′) +
1

2
(x− xν ′)

†Cν ′(x− xν ′), (116)

where the expansion quantities at ν ′ are related to those at ν as

aν ′ = (ν/ν ′)[aν + bν · (xν ′ − xν) +
1

2
(xν ′ − xν)

†Cν(xν ′ − xν)] (117)

bν ′ = (ν/ν ′) [bν + Cν(xν ′ − xν)] (118)
Cν ′ = Cν . (119)

The location of the SPP scales as

xν = (ν/ν ′)H−1(ν ′)H(ν)xν , (120)

where, using the 2× 2 identify matrix I,

H(ν) = 2ανI + (ν/ν ′)Cν (121)

A change in frequency from ν to ν ′ therefore changes the dispersion measure from DMν = −aν/ν
to DMν ′ = aν ′/ν

′. Other quantities also vary according to standard scaling laws for the unrefracted
scattering parameters that are modified by the frequency-dependent refraction.

4.7 Summary of Dispersion and Refraction Effects

1. Dispersion measure: DM = −aν/ν is determined by the screen phase aν at the stationary-
phase point, x. DM is therefore frequency dependent because the SPP shifts with a change
in frequency, causing aν to change in accordance with the quadratic phase model;

2. Image distortion: a circular image becomes elliptical image with axial ratio Gx/Gy;

3. Flux variation ∝ GxGy;

4. Mean image location θ = x/D′ = −(c/2πν)(Ds/D)b ∝ ν−2;

5. Mean-square image size ∝
(
G2
x +G2

y

)
;

6. Mean pulse-broadening time ∝
(
G2
x +G2

y

)
;

7. Scintillation bandwidth ∝
(
G2
x +G2

y

)−1;

8. Scintillation time scale ∝
[
(GxVeffx)

2 + (GyVeffy)
2
]−1/2.

If there is variation in the apparent flux density due to refraction, all other measureable quantities
will also vary with epoch. If only linear refraction occurs, the image centroid and delay associated
with it will be epoch dependent but none of the quantities involving Gx,y will vary.
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4.8 Utility and Suggested Studies

The use of a quadratic phase function to describe refraction and to renormalize the KDI leads to
expressions that are useful in both simulations and for interpreting time series of flux densities,
DM, and scintillation parameters.

Simulations: Calculation of the time dependence of DM for different frequencies can be stream-
lined by quadratically expanding the refraction phase around the SPP at an initial frequency and
then calculating expansion parameters at other frequencies using expressions in §4.6. From these,
differences in all measureable quantities can be calculated at different frequencies.

Data interpretation: The flux density, DM, and scintillation parameters have time dependences
that are intertwined according to the summary expressions given above. Analysis of multi-epoch
measurements can aim to demonstrate consistency. For example, if flux density variations are
seen that can be attributed to refractive interstellar scintillations (RISS), then variations in DM,
the scintillation parameters3, and arrival time are expected. While it may not be possible to fully
disentangle the refraction-screen parameters and predict variations in one quantity (e.g. scintillation
time scale) from another (e.g. the flux density or the scintillation bandwidth), the variance and time
scales of the different quantities should be consistent. Particularly valuable would be estimates of
timing variations from measured variations of flux density and scintillation parameters. These can
be used for timing noise-budget analyses and for optimizing observing programs with respect to
frequency ranges and cadence, etc.

4.9 Time Variations of DM from a Thin Screen

Motions of the pulsar, observer, and screen will cause DM to be time dependent. As long as the
pulsar is not embedded in the screen, only the transverse components of the velocity are relevant
and the combine into the effective velocity given by Eq. 112. At a given frequency ν, the screen is
sampled at a location x(t) = x + Vefft. The dispersion measure is then Need to check this vis a
vis total phase vs. just the refraction phase.

DM(t) = −ν−1φr(x) = ν−1
(
a + b ·Vefft + Veff

†CVefft2
)
. (122)

3Changes in the secondary spectrum and scintillation arcs should also occur.
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Stanimirović, S., Heiles, C., & Kanekar, N. 2007, SINS - Small Ionized and Neutral Structures in
the Diffuse Interstellar Medium, 365, 22

Stinebring, D. 2007, SINS - Small Ionized and Neutral Structures in the Diffuse Interstellar
Medium, 365, 254

You, X. P., et al. 2007, MNRAS, 378, 493

30


