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Abstract

The NANOGrav 9 year data release contains unusual deviations in dispersion measure vari-
ations caused by abrupt changes in the electron density of the interstellar medium along the
line of sight. We employ a couple of techniques in Bayesian analysis and Markov Chain Monte
Carlo sampling to develop statistical models for dispersion measure in current NANOGrav
observations, as well as predict future trends. These models are designed to be integrated
into a “Quick Look” program, the output of which can then be used to identify DM “events”
in recently collected data. We also analyze the negative DM event which occurred along the
line of sight to PSR J1713+0747, which we have determined to be the result of an electron-
devoid region in the ISM approximately 1.64 AU in width transverse to the LOS and 104

AU along the LOS. We then propose a few simple geometrical structures which could ap-
proximate the shape of the electron-deficient region in the ISM. Finally, we discuss a few
potential physical sources which might explain the existence of such a region.



1 Introduction

NANOGrav is a North American-based
collaboration which carries out radio fre-
quency pulsar timing observations with the
hope of detecting low frequency gravita-
tional waves from a set of millisecond pul-
sars [4]. These observations are carried out
using the William E. Gordon Radio Telescope
in Arecibo, Puerto Rico, and the Robert
C. Byrd Green Bank Telescope in Green
Bank West Virginia. Pulse arrival times
are calculated up to nanosecond precision
and searched for correlated variations origi-
nating from gravitational waves passing be-
tween Earth and the pulsars. Other varia-
tions in the arrival times of pulses can be ob-
served due to a large number of factors in-
cluding the relative motion of a pulsar with
respect to Earth, frequency dependent delays
due to inhomogeneous interplanetary and in-
terstellar ionized medium along the line of
sight, and intrinsic pulsar spin evolution.
We hope to understand and correct for all
non-gravitational wave sources that manifest
themselves as variations in the TOAs. A cru-
cial component of the success of pulsar timing
arrays relies on the understanding of how the
interstellar medium affects timing accuracy.

Radio beams have to travel long distances
through the interstellar medium (henceforth
referred to as the ISM) before they are de-
tected by our radio telescopes. The ISM
causes variations in the pulsar TOAs through
many of mechanisms, with one of the most
prominent being free electron dispersion. The
free electrons and ions present in the ISM
cause a frequency dependent increase in the
travel time of the pulses, with lower fre-
quencies experiencing larger time delays than
higher frequencies. We quantify this disper-
sive delay through a quantity known as dis-

persion measure, which is defined as

DM =

∫ d

0

nedl. (1)

Dispersion measure represents the integrated
column density of free electrons present along
the line of sight to the pulsar, and has been
found to vary systematically for most of the
pulsars observed by NANOGrav. Addition-
ally, we occasionally see abrupt changes in
the DM, known as DM events, for which we
are currently lacking physical explanations.

Although NANOGrav observes at rela-
tively frequent intervals of 1 week–3 weeks,
the collaboration chooses to publish a few
years worth of data at once, thus delaying
the availability of processed data. However,
we would require an almost real-time alert
system for potential DM events in order to
schedule observations that would yield useful
information. Such a system would require ac-
curate measurements and models of DM and
consistent updating with new measurements.

In §2, we describe the models used and
methods employed to obtain best fitting mod-
els for the present data. Section 3 in-
cludes the results and a discussion thereof.
In §4, we look at the physical character-
istics of a previously observed DM event
in PSR J1713+0747, as well as define con-
straints on the dimensions and shape of a hole
in the ISM which would be required to ex-
plain the drop in the observed DM. In §5, we
discuss the future implications of our work.
Finally, in §6 we provide a summary of our
work.

Throughout, in order to characterize the
DM variations, we adopt the standard
NANOGrav technique of using DMX, which
is a piecewise linear fit of the variations in DM
that results from fitting within the TEMPO and
TEMPO2 software packages. Additional infor-
mation on DMX, its definition, and analy-
sis is contained within the NANOGrav Nine-
Year Data Release [4] and Lam et al. [9].
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2 Models & Methods

Proper modeling of DM variations must ac-
count for minute changes in the ISM along the
LOS, which, on large scales, is thought to ex-
hibit Kolmogorov turbulence [12]. Our mod-
els were trained on the NANOGrav 9 year
data set and tested for effectiveness via trend
prediction of the NANOGrav 11 year data
set. We based our models on the idea that
changes in the DM will be dominated by the
changes in the ISM between Earth and the
pulsar. In particular, we consider the effects
of the solar wind and a few correlated changes
in the ISM across the LOS [9]. To ensure the
consistency of our models during the intro-
duction of future data, we obtained our model
parameters through a Bayesian approach to
model fitting. In short, this method of infer-
ence relies on new data to update prior knowl-
edge for a given phenomena in order to more
accurately predict the outcome of future oc-
curences.

From a mathematical standpoint, let us
consider a set of model parameters θ that are
collectively represented by a prior distribu-
tion Pr(θ). When new data D is introduced,
we can update our current model by multi-
plying it by a likelihood distribution Pr(D|θ).
By applying the product rule, we get

Pr(D|θ)Pr(θ) = Pr(θ|D)Pr(D), (2)

where Pr(θ|D) is the resulting posterior dis-
tribution and Pr(D) is the evidence for the
model. Dividing by the evidence, we get

Pr(θ|D) =
Pr(D|θ)Pr(θ)

Pr(D)
, (3)

more commonly known as Bayes’ Theorem [7,
Chapter 1.3].

In our approach to modeling DM vari-
ations, we used two methods based on
Bayesian inference.

2.1 Simple Bayesian Analysis

The DMX variations follow visible trends
which can be easily modeled using a lin-
ear term and a sinusoidal term having pe-
riod close to one year. The linear term ac-
counts for the motion of the pulsar towards
or away from earth, while the sinusoidal term
is present because of the changing effects of
the solar wind as the earth revolves around
the sun. Some pulsars require an additional
sine term with a period much longer than one
year in order to model larger scale variations.
As a result, our models are based upon simple
equations having one linear term and one or
two sine terms with different periods. They
are described by

DMX(t) = b+mt+ A1 sin

(
2πt

P1

+ φ1

)
+ A2 sin

(
2πt

P2

+ φ2

)
.

(4)
Fitting our models using Bayesian analysis

involved defining prior, likelihood and poste-
rior probablity functions, as well as setting up
a sampler to call these functions recursively.
We chose flat uniform priors, defining a cer-
tain tentative range for each parameter and
using 1 as our prior probability if a parameter
was within the given range, and 0, otherwise.
In order to maximize the likelihood estimate
for our data, we chose our likelihood func-
tion to be a Gaussian based on residuals R
between the current model and the data:

ln(Likelihood) = −Σ
R2

2σ2
, (5)

where σ is the uncertainty on each data point.
The posterior probability is then defined as

the product of the prior and the likelihood:

ln(Prob) = ln(Prior) + ln(Likelihood). (6)

We then sampled from a n-dimensional pa-
rameter space by implementing the Metropo-
lis Hastings algorithm, which iteratively gen-
erated a sequence of random samples from the
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prior such that the distribution of the next
sample was dependent only on the current
value (thus turning the sequence of samples
into a Markov chain) [10] [6]. If the prior dis-
tribution was well sampled, the posterior rep-
resented a distribution of the best fit models
based on our likelihood function.

The mean of the resulting distribution was
taken as the maximum likelihood estimate,
i.e. the best fit model for our data, while
the standard deviation of the distribution was
considered to be the error in estimating the
best fit model.

Once we obtained the models, our task of
calculating the significance of variation of a
new observation was relatively simple. Each
data point was converted into a gaussian with
mean equal to the data value and standard
deviation equal to the errorbar of that point.
Thus a distribution of data points was con-
verted to a collection of gaussians represent-
ing the data. Subtracting the model distribu-
tion from this collection of gaussians gave us a
distribution of the residuals, where the mean
was the actual residual at that point, and the
standard deviation was the uncertainty or the
error in calculating that residual.

The significance of the deviation (σ−value)
of a new observation from the general trend
was calculated as the ratio of the difference
between residual of the new observation and
the overall mean of previous residuals, over
the standard deviation of the overall resid-
uals. This is equivalent to determining the
number of standard deviations away a new
data point is from the mean of previous resid-
uals, and can be given by

σ−value =
New Residual-Mean(previous residuals)

Std.Dev.(previous residuals)
.

(7)

2.2 Gaussian Process Regres-
sion

In our second method, we modeled the
DM variations with a linear and sine term
to account for the pulsar’s position relative
to Earth and the solar wind, respectively.
We also computed Bayes factors to determine
whether the data preferred the addition of a
quadratic term to account for stochastic pro-
cesses [3] [8]. Thus, when considering a linear
model M1 and a quadratic model M2, the dis-
persion measure taken at some day t can be
described by

DM(t) = nct2 +mt+ A sin

(
2πt

P
+ φ

)
+ b,

n =

1, if 2 ln
(

Pr(D|M2)
Pr(D|M1)

)
≥ 6

0, if 2 ln
(

Pr(D|M2)
Pr(D|M1)

)
<6

.

(8)
In order to obtain the most accurate mod-

els of future variations, we then introduced a
Gaussian random variable for each point in
our data. The covariance between any two
points ti and tj could then be represented
by a matrix Kij and equivalently described
by a function k(ti, tj) [14]. For our purposes,
our covariance function was described by the
Matèrn-3

2
Kernel as provided by the Gaussian

process package George [1]

k(ti, tj) =
(

1 +
√

3(ti − tj)2
)
e−
√

3(ti−tj)2 ,

(9)
as it closely resembles the -8/3 spectral index
typically seen in DM variations.

The resulting log likelihood function is then

ln Pr(D−DM(t)|GP) =

− 1

2
(D−DM(t))T (N +K)−1(D−DM(t))

− 1

2
ln det(N +K)− n

2
ln(2π),

(10)

1https://github.com/jellis18/PTMCMCSampler

3

https://github.com/jellis18/PTMCMCSampler


where N is the noise matrix of the data and
n is the dimension of N . The likelihood was
given a uniform prior and the posterior was
then obtained via MCMC sampling 1.

We allowed our Gaussian process to have
knowledge of the data up to an arbitrary
point and then let it attempt to predict fu-
ture trends. Assuming our model is sufficient,
we can use this technique to identify outliers
in new data that may be indicative of a DM
event.

During our runs, we allowed the Gaussian
process to have access to data up to a speci-
fied date and then allowed it to make predic-
tions of trends in the remainder of our exist-
ing data. We then sampled a fraction of the
Gaussian fits and calculated the significance
of each data point with the formula

σ =

∣∣∣∣∣ D− µGauss√
σ2
D + σ2

Gauss

∣∣∣∣∣ , (11)

where µGauss is the mean of the sampled
Gaussian fits, D is the data, σD is the stan-
dard deviation of the data, and σGauss is the
standard deviation of the Gaussian fits.

3 Results

3.1 Simple Baysian Analysis

For each pulsar modeled with this method,
we present one figure containing three plots,
with the first containing the model’s fit over
the DMX values, the second showing the

residuals from the model and regions of 1σ
and 2σ variation from the mean, and the
third displaying the calculated σ value for
each observation of the pulsar.

PSR J1741+1351 (Figure 1) showed a
consistent linear variation and generally re-
mained well-behaved. Overall, we found that
our modelsmanage to provide accurate pre-
dictions for all pulsars showing just a linear
trend.

PSR B1855+09 (Figure 2) followed a fairly
linear trend in the 9 year data set, but took
on new behavior in the 11 year data set. As a
result, our predictions diverged from the ob-
served 11 year data. There were a few similar
cases in which our models could detect signif-
icant changes in the overall trends, and our
model predictions were rendered useless un-
less they were either trained on more data or
had some knowledge of the deviating trend.

PSR J1918-0642 hinted at variations with
higher order terms in addition to the annual
variations present in most of the pulsars. We
found that our model was consistent in the
tracking of this pulsars DMX variations and
gave satisfactory predictions for the periodic-
ity in the 11 year data.

Our final example, which we discuss
in greater detail in section 4, is PSR
J1713+0747, which experienced a DM event
during the time of the 9 year dataset. The
high sigma value generated for this pulsars
DM event led us to believe that we can resolve
significant variations in future DMX observa-
tions.
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Figure 1: PSR J1741+1351 shows a linear trend in DMX variations. Our models from
the 9 year dataset give accurate predictions for the 11 year period. The blue vertical line
indicates the end of 9 year dataset.

Figure 2: PSR B1855+09 shows a changing trend in its DMX variations. Our models detect
this change in the overall trend of the pulsar but gives inaccurate predictions consequently.
The vertical blue line indicates the end of the 9 year dataset.
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Figure 3: PSR J1918-0642 requires two sine terms and a linear term to model its variations.
The blue vertical line indicates the end of the 9 year dataset.

Figure 4: PSR J1713+0747 shows a DM event in the 9 year dataset. Our models can easily
detect such events with high σ values. The blue vertical line indicates the date up to which
data has been used to generate models
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3.2 Gaussian Process Regres-
sion

As demonstrated by the fits in Figures 5
- 7, the Gaussian process method was ex-
ceedingly effective at modeling “visible” data.
The method was also quite accurate at pre-
dicting trends up to a year in future for most
variations, with results generally seeing a de-
cline in accuracy after about 2 years for the
strongest fits. A higher cadence and longer

data sets would likely increase these time
scales.

A significant result of this time window
of accuracy is that significant deviations in
DM trends (Figure 8), as well as DM events
(Figure 9), might be found even with a
yearlong gap in the data, assuming a rela-
tively well-behaved ISM. Incidentally, signif-
icant changes in the ISM over many epochs
may play a significant role in long-term pre-
dictability.

Figure 5: A Gaussian process on a pulsar with a strong linear DM trend. The vertical blue
line indicates the point where the Gaussian process starts making predictions.
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Figure 6: A Gaussian process on a pulsar with a strong periodic DM trend. The vertical
blue line indicates the point where the Gaussian process begins making predictions.

[!ht]

Figure 7: A Gaussian process on a pulsar with a strong quadratic DM trend. The vertical
blue line indicates the point where the Gaussian process begins making predictions.
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Figure 8: A Gaussian process on a pulsar that demonstrates a significant variation in its
DM trend after 2014. The vertical blue line indicates the point where the Gaussian process
begins making predictions.

Figure 9: A Gaussian process recovering the DM event in PSR J1713+0747. The vertical
blue line indicates the point where the Gaussian process beings making predictions.
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4 The DM Event in

PSR J1713+0747

We now turn to determining the physical
characteristics of a DM event as seen in PSR
J1713+0747.It is known that this particular
pulsar is about 1.18 kpc away from Earth,
moves with a proper motion of around 6.285
mas/yr and has a total DM0 of approximately
15.99 pc cm−3 along the LOS2 [11]. In Fig-

ure 10 we show a closeup of the sharp drop
in the DMX variations observed around MJD
54751. From this figure we can make the fol-
lowing observations: 1.) The DM event is
asymmetric with a sharp drop and gradual
recovery. 2.) The DM event is aperiodic/u-
nique as we have only seen it once. 3.) The
sharpest decrease corresponds to a ∆DM of
about −6×10−4pc cm−3. 4.) The DM recov-
ery time is about 6 months.

D
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 6
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0
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 p
c 

cm
-3

∆𝑡~ 6 months

Figure 10: Closeup of the DM event in PSR J1713+0747

2http://www.atnf.csiro.au/people/pulsar/psrcat/
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These observations lead us to conclude that
our LOS must have crossed a region devoid of
free electrons (which for the remainder of this
paper will be referred to as a hole) in the ISM.
For our analysis we made a couple of assump-
tions about the ISM in order to determine the
properties of such a hole.

By rearranging equation 1, we found that
a DM0 of 15.99 pc cm−3 corresponded to a
total of 1019 e− along the LOS. Assuming
that the ISM is homogenous, a drop of −6×
10−4 pc implies that the hole must have been
at least∼ 10,000 AU in length along the LOS.
Since we know that the hole moves across the
line of sight in 6 months, if we assume the
transverse velocity of the ISM to be negligi-
ble relative to transverse velocity of the Pul-
sar, we deduce that the hole needed to have
an angular diameter of 3.1 mas. Additionally,
if we assume that the hole is approximately
halfway between Earth and the pulsar, the
breadth of the hole across the line of sight

should have been around 1.6 A.U.
These dimensional limits gave us some idea

about the possible geometric structure of the
hole. We considered many different shapes
and settled on two basic toy models, in which
the event could be described by either a cylin-
der or a crescent (or a half-crescent). In the
cylinder model, we required the structure to
have a negative density gradient along its
length and that it be tilted at a small an-
gle from the LOS. We determined that the
hole should have an extremely low density
of electrons along the initial LOS which in-
creased gradually until it matched the den-
sity of electrons in the surrounding ISM. In
the crescent model, the density remained con-
stant while the length of intercept made by
the LOS through the hole decreased gradu-
ally with time due to the curved shape. Both
full and half-crescents satisfy the shape re-
quired for a gradually vanishing hole.
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DMX observations
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Figure 11: Model candidates for the DM event in PSR J1713+0747. (Left) Cylinder model.
(Right) Cresent model.
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We also attempted to identify possible
physical systems which could cause a decrease
in the electron density of the ISM. Based on
the size and geometry of the structure, we
postulate that the most likely candidates in-
clude interstellar filaments, magnetospheres
of stars, and stellar wind shock waves. Each
of these mechanisms has the ability to cre-
ate regions in the ISM which are devoid of
free electrons, as well as fit the proposed
shapes. Another possiblity is that some A.U.-
scale“shield” or enveloping layer of HII or a
non-ionizing material such as dust could have
protected this region of the ISM from ion-
ization. This particular explanation fits well
with the model (Figure 11) and is further
strengthened by observations of dust and HI
in regions near our LOS to the pulsar.

We can further narrow down our list by im-
posing additional physical constraints on the

system, such as calculating a rough scale of
the energy required to create the hole. How-
ever, it is likely that evidence in the form of
A.U.-resolution images of the LOS to PSR
J1713+0747 will be required to confidently
rule out or confirm any of these candidates.

Given the highly disproportionate ratio of
the structure’s dimensions, it is also conceiv-
able that, rather than observing the entire
structure, we are instead observing a tiny
sliver of a much larger architecture in the
ISM. Such a configuration would likely be on
the order tens of thousands of A.U. to a few
pc in length and around 0.1 pc in width [2].
Indeed, in H-α, HI, and dust images near the
pulsar, we observe structures of this magni-
tude, making it a possibility that some fila-
ment branching off from such a region could
have crossed our LOS.

Figure 12: Observations at various frequencies in the direction of PSR J1713+0747. Images
are 1 deg2 in area, with the x- and y axes labeled in pixels and the colorbars in arbitrary
units. White cross indicates the location of the pulsar in the image. (Left) Hα (from [5]);
(Middle) Dust distribution, as inferred from the Schlegel, Finkbeiner, & Davis Dust Map
Survey [13]; and (Right) H i, from the Effelsberg-Bonn Survey [15]

5 Future Work

A better understanding of DM events re-
quires their real-time detection. As of this

writing, we are in the process of implement-
ing a near real-time system to process TOAs
with PSRCHIVE3 and analyze them for DM

3psrchive.sourceforge.net
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variations with TEMPO4 and TEMPO25. In
doing so, we will be able to catch significant
variations as soon as they appear in the data.

We can further narrow down our search for
the physical structures behind these events by
imposing additional constraints on the sys-
tem, such as calculating a rough scale of the
energy required to create the hole. How-
ever, it is likely that evidence in the form of
A.U.-resolution images of the LOS to PSR
J1713+0747 will be required to confidently
rule out or confirm any of these candidates.
As such, it would prove useful to have access
to observatories that offer A.U.-level resolu-
tion on an as-needed basis.

6 Summary & Conclu-

sions

We have analyzed DM variations in the
pulsars of the NANOGrav collaboration in an
attempt to effectively predict future trends as
well as identify significant deviations caused
by structures in the ISM. Simple Bayesian
and Gaussian process regression methods
were used to generate models and predict
these variations and have been found to work
effectively up to two years into the future, in
most cases.

We also analyzed the DM event found in

the data of PSR J1713+0747 and concluded
that such an event must be caused by a re-
gion in the ISM devoid of electrons that mea-
sures approximately 1.64 au in width trans-
verse to the LOS and 104 au along the LOS.
Based on the characteristics of the deviation,
we proposed a few toy models and considered
the astrophysical mechanisms for their cre-
ation. Finally, we discussed the ongoing im-
plementation of a program to analyze TOAs
and analyze DM variations in near real-time.
We also concluded that access to telescopes
with au-scale resolution would be necessary
to further improve our understanding of DM
events.

We thank J. Ellis, S. Taylor, and M. Vallis-
neri for their guidance on Bayesian analysis.
We thank the team at the SFP and ISP Of-
fices at Caltech for ensuring that our logistics
were taken care of. Finally, we thank our fi-
nancial sponsors at SURF 2016, NSF, Ober-
lin College, and IIT(BHU) Varanasi, for pro-
viding us with the funnding to make our stays
at Caltech possible. Part of this research
was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, un-
der a contract with the National Aeronautics
and Space Administration. The NANOGrav
project receives support from NSF Physics
Frontier Center award number 1430284.

4tempo.sourceforge.net
5https://bitbucket.org/mkeith/tempo2
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Appendix A

Simple Bayesian Analysis Code Summary

1. Read in file containing new data

2. Read in the previous data-set file

3. Read in guesses

4. Count the number of sine terms required by counting the number of guesses given

5. Try to optimize the guesses using scipy.optimize

6. Set-up the MCMC sampler

7. Define log prior function

8. Define log likelihood function

9. Define a function to generate models

10. Define log posterior function

11. Run a 100 step burn-in

12. Reset sampler

13. Run the sampler again for large number of steps, output saved in chains

14. Burn-in the first 25% of the resulting chains

15. Reshape the chains into flatchains

16. Generate models and predictions using flatchains

17. Calculate mean of models and predictions upto the new data point

18. Generate an array of gaussians (with mean = data value and std. dev. = errorbar)
representing the array of data points

19. Calculate array of residual distributions by subtracting the distribution of models from
the array of data gausssians.

20. Calculate the mean and standard deviation of each individual residual in the residual
distribution array.

21. Calculate the mean and standard deviation of the whole residual array.

22. Similarly calculate residual distribution for the new data point by subtracting the
predicted distribution from a gaussian generated for the new data point.
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23. Calculate mean and standard deviation of residual distribution of the new data point.
(This mean is taken as the residual value for the new data point and the standard
deviation as the error in calculating the residual)

24. Calculate σ − value for new data point as :

(Residual of new data point - Mean of residuals of previous dataset) - Error in calculating the residual of new data point
Standard deviation of residuals of previous dataset

25. Print results.

26. Compare the σ − value with a threshold, and rasie an alarm if found larger.

Gaussian Process Regression Code Summary

1. Read in the current data set file.

2. Read in file containing new data.

3. Construct a model with no quadratic term.

4. Add random Gaussian variables to the model.

5. Define the according log prior and log likelihood functions.

6. If the log Bayes factor is already known, ignore step 3 and run the PTMCMC sampler
with the proper model. Otherwise, run the PyMultinest sampler to obtain the log
evidence.

7. If PyMultinest was used in the previous step, repeat all above steps for a model with
the quadratic term included. Otherwise, ignore this step.

8. If PyMultinest was used, compute the log Bayes factor from the log evidences of the
two models to determine which model to use.

9. Draw 500 samples and use them to predict trends in the data after a certain epoch.

10. Compute the mean and standard deviation of those samples.

11. Plot the posterior distributions, as well as a triple plot of the data with the 500 model
samples and mean, the residuals, and the corresponding significance values at each
point.
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[15] B. Winkel, J. Kerp, L. Flöer, P. M. W. Kalberla, N. Ben Bekhti, R. Keller, and D. Lenz.
The Effelsberg-Bonn H i Survey: Milky Way gas. First data release. Astronomy &
Astrophysics, 585:A41, January 2016. 13

18


	1 Introduction
	2 Models & Methods
	2.1 Simple Bayesian Analysis
	2.2 Gaussian Process Regression

	3 Results
	3.1 Simple Baysian Analysis
	3.2 Gaussian Process Regression

	4 The DM Event in PSR J1713+0747
	5 Future Work
	6 Summary & Conclusions

