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1 Introduction

There have been some larger, perhaps unexpected changes in pulsar parameters after adding
additional years of observation into the data set, for example moving from the 11 year to 12.5
year NANOGrav data sets. The goal of this project is to investigate how pulsar model parameters
change as more observation data is compiled over time. By simulating pulsars, data sets of greater
length than is available from real world observations can be analyzed in order to answer questions
such as whether model parameters approach the true pulsar values over time and how quickly they
approach those values. Simulation also allows for the isolation of certain effects, such as the type
of noise in pulsar data. The hope is that this analysis provides some guide to expectations on how
and by how much, model parameters should change as more data is added to NANOGrav data
sets.

2 Simulating TOAs

In order to examine datasets of varying lengths of years, the first step of this project involved
simulating the Times of Arrival (TOAs) of a pulsar. Using libstempo which is a library for accessing
TEMPO2 routines in python, TOAs of various observation length can be simulated. In this project,
libstempo’s toasim package allowed for simple TOA simulation. Simulation follows a process that
is very much the reverse of typical pulsar timing. Rather than start with observed data and
work towards a pulsar timing model made up of parameters, simulation takes the parameters as a
starting point and works backwards to generate TOAs.

The first step in simulation was to create a parameter file for a pulsar. Rather than make up
new pulsar parameters, the parameters for the pulsar J0740+6620 were used. Rather than include
the more than four hundred parameters that make up a typical pulsar timing model, this project
focused on only seven of the main parameters: Ecliptic Longitude, Ecliptic Latitude, Proper Mo-
tion of Ecliptic Longitude, Proper Motion of Ecliptic Latitude, Spin Frequency, Derivative of Spin
Frequency, and Parallax. Below is the .par file used:

PSR J0000+0000
PEPOCH 50000.0
ELONG 103.7591360662907 1
ELAT 44.1024846763988 1
PMELONG -2.7479 1
PMELAT -32.4337 1
F0 346.5319964932128300 1
F1 -1.463885178981e-15 1
PX 0.5376 1

Next, the following function in libstempo.toasim created an idealized simulated pulsar from a
given .par file with an observation length specified by the starting and ending MDJ. The observation
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period was set to every 14± 1 days and the error bars on each TOA was set to a common error of
10ns. After injecting noise, the .tim file could be saved for the simulated pulsar.

Simulate Pulsar

psr = LT. f ak epu l s a r ( p a r f i l e=basename+” . par” , obst imes=np . arange ( start MJD , end MJD ,
obs pe r i od )+np . random . normal (0 , 1 ) , t o a e r r )

Three different categories of noise were injected into the simulated pulsar, white noise, red
noise, and gravitational wave background (GWB). The amplitude for red noise was 1.5e− 15 and
5e−16 for GWB. By specifying different starting and ending MJDs, data sets ranging from one to
thirty years of length in each noise regime could be created. In order to ensure that the injected
noise remained the same in years shared by two data sets, a consistent seed value was used for
each type of noise. This ensured that as more years of observation were added, the previous years
remained unchanged.

Inject Noise
i f wh i t e no i s e :

LT. add e fac ( psr , e f a c =1.0 , seed=seed ∗7)
i f r e d no i s e :

LT. add redno i s e ( psr ,A=1.5e−15,gamma=3, seed=seed ∗7)
i f gwb :

LT. add gwb ( psr , f low=1e−10,gwAmp=5e−16, seed=seed ∗6)

To visualize each type of noise and confirm that simulation was working, the residuals were
plotted, examples of which can be seen in Figure 1.

Figure 1: Examples of simulated residuals (a) White Noise (b) Red Noise (c) GWB

3 Calculating Fit Parameters

Armed with a process for creating TOAs of different observation length and noise, the simulated
data sets were treated as if they were real observations. For each length of observation, the
TOAS were modeled using TEMPO2’s fit routine to obtain best fit values for each of the seven
parameters. Saving the parameter values each time a new year of data is added to the TOAs
allowed for the observation of how each parameter value changes over time. The hypothesis was
that as the observation length increase, each parameter value should approach the known value,
which specified in the .par file used to generate the simulated data (akin to some physically true
value of a real world pulsar). This hypothesis was confirmed, and Figure 2 illustrates how one of
the parameters does indeed approach the true value over time.

Note that fit values for the one year are excluded due to their highly sporadic nature interfering
with visualizing the rest of the observation lengths. For all analysis from this point onward, only
observation lengths ranging from two to thirty years were considered. Plots such as this were
generated for each parameter in each of the three noise regimes and these full results can be found
in the appendix.
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Figure 2: Example fit parameter approaching the known value

4 Standard Deviations of Parameters

The next step in this analysis involved investigating how consistently the fitted parameters
behave when the noise and the residuals are different. Again for observation lengths from two to
thirty years, thirty samples were computed, each with a different noise seed. Then the standard
deviation of each parameter at each time slice was computed. The hope was that the standard de-
viations decreased over time which would indicate that there is less variance in the fitted parameter
values when more data is available to fit. These standard deviations can be thought of as giving a
sense of how the confidence interval of each fit parameter changes as more years of observed data
become available. Almost always the standard deviations did decrease over time and an example
plot is included in Figure 3. As expected, some parameters such as the spin frequency have a much
lower absolute variance than parameters like parallax. Additionally, some parameters consistently
approach the true pulsar value more rapidly than others which is indicated by the sharpness of
the exponential trend.

Figure 3: Example standard deviation over time
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5 Curve Fitting

Beyond just visually examining the trends, each standard deviation was fitted with an expo-
nential function of the form:

f(T ) = Ae
T
τ + C

Figure 4 illustrates one such fit. Note that because of the small amplitudes involved in the standard
deviations of some parameters, the standard deviations were normalized before fitting for compu-
tational ease. The true amplitude of each fit function was saved, despite each plot displaying the
normalized version. The characteristic time τ gives some sense of the timescale of how quickly
the precision of each parameter increases as more observing years are added and allows for some
numerical comparisons between fit parameters and noise regimes.

Figure 4: Example fitted standard deviation

6 Auto-correlation Functions

The traditional purpose of calculating the autocorrelation function of a signal is to detect non-
randomness. Given measurements, y1, y2, ..., yn at time x1, x2, ..., xn, autocorrelation function at
lag k is defined as

Ak =
1

n

∑N−k
i=1 (yi − ȳ)(yi+k − ȳ)

σ2

In this application, the question of interest was whether each parameter approaches the true
value smoothly from one direction or oscillates above and below the value. For example, if a fit
parameter started above the true value and and asymptoted towards the true value without ever
dipping below the true value, then the manner in which the fit parameter approaches the true
value has a very low randomness. On the other hand, high randomness would mean that the fit
parameter approaches the true parameter over time, but does not do so in a predictable way and
bounces back and forth randomly. The autocorrelation hopefully provides some insight into this
question for each parameter, so that jumps in model parameters from real world analysis has some
quantitative context.

To achieve this, the ACF of each parameter function was calculated individually for each sample.
Before calculating the ACF of each parameter function sample, each signal was normalized by the
standard deviation fit function found earlier so as to remove the inherent greater strength of
oscillations around the true parameter value at shorter observation lengths. Figure 5 shows the
raw signals of one parameter, and after dividing each signal by the fit function, example normalized
signals are shown in Figure 6.
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Figure 5: Example raw ACF signal samples

Figure 6: Example fit-normalized ACF signal samples
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After calculating the ACF of each sample normalized signal ( Figure 7), these results were
averaged together to generate a representative ACF for each parameter in each noise regime (Figure
8).

Figure 7: Example ACF samples

Figure 8: Example averaged ACF, ELAT with white noise

In the full results, the zero crossings of each ACF are included as a metric of interest in charac-
terizing the width.

7 Conclusions

Overall, these results suggest that as a whole model parameters generally tend to approach their
true values. While we have certainly observed instances where a model parameter diverges from
its true value, in most cases the fit does converge. This can be seen in both individual parameter
plots as well as the standard deviation plots in the Appendix. Nearly all of the standard deviations
of each parameter decrease as more data is added in which indicates a convergence of fit. For most
parameters the fit appears to converge exponentially. This means that typically the standard
deviations decrease rapidly in the first five years of adding new observation and slow later on.

Beyond this simple trend, we found a clear trends in the effect each noise regime has on fit
parameter convergence. As expected, fit parameters converged the fastest with just white noise.
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Red noise and GWB noise behaved fairly similarly, but with slight differences. Red Noise fits
tended to converge slightly slower than GWB ones, but their convergence also tended to be slightly
more smooth and stable. These observations can be seen by comparing the magnitude and shape
of each standard deviation plots in the Appendix Figure 12. Also note that parameters such as
spin frequency and spin derivative have much nicer behaviors than more troublesome parameters
such as parallax. This aligns with current findings and understanding within NANOGrav that
suggested that parallax by nature is a more difficult parameter to fit, whereas spin frequency can
be determined much more precisely.

The implications of these results are important in guiding decisions within other research groups
such as NANOGrav for several reasons. One common question is whether or not data from recently
discovered pulsars such be included in updates of pulsar timing arrays. These results make clear
that any pulsar timing model built on only one or two years of observation data is questionably
accurate. Additionally, looking at the results included here can help guide expectations for how
much the accuracy of a pulsar timing array should be expected to improve over time. The time
constants τ calculated from standard deviation fit functions suggests that deviations should be cut
by a factor of 1

e every τ years (generally around 2 years for a majority of parameters and about
10 years for parallax).

Future work on this project would involve simulation larger sample sizes of pulsars which would
hopefully smooth many of the standard deviation curves. Additionally, in calculating the ACFs,
more work is required to normalize each signal before finding the ACF. Using an exponential
function to fit each signal under the current method is a naive assumption and often artificially
injects power into parts of the normalized signal since the exponential fit can be systematically
inaccurate. Additionally, more exploration is required to characterize the effect of the strength of
injected noise. With this information, accurate noise limits could be set using the latest research
on the strength of the gravitational wave background.

8 Appendix/Results
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Figure 9: Parameter fits
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Figure 10: Standard Deviations
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Figure 11: Fit Functions
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Figure 12: Autocorrelation Functions
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