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Fitting a polynomial model to a time series and subtracting it removes
variance from the data at the lowest frequencies. How much variance is
removed is quantified by the transmission function, T (f), which is the ratio
of the variance remaining at frequency f to the initial variance at the same
frequency. In the pulsar timing array context, this formalism was introduced
Blandford et al. (1984), and further developed by Cordes (2013) and Madison
et al. (2013). Here we will compute the transmission function for polynomial
fits of various orders.

Let us consider the idealized case of data sampled continuously over a
finite observing time, T . For convenience, we will set t = 0 at the mid-
point of the observation, so that the data is represented by a function, x(t),
supported on the interval [−T/2, T/2]. Appropriately scaled versions of the
Legendre polynomials Pn(x) form a complete orthogonal basis for the space
of (appropriately well-behaved) functions of this form. In particular, we have∫ −T/2

−T/2
Pm

(
2t

T

)
Pn

(
2t

T

)
dt =

Tδmn
2n+ 1

. (1)

It follows that we can expand x(t) in a series of the form

x(t) =
∞∑
k=0

CkPk

(
2t

T

)
, (2)

where the coefficients Ck are given by

Ck =
2k + 1

T

∫ −T/2
−T/2

Pk

(
2t

T

)
y(t)dt. (3)
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The sum of the first n terms in this series is the polynomial of degree n− 1
most closely approximating x(t) in the least-squares sense – in other words,
the result of least-squares fitting a polynomial of degree n− 1 to x(t).

Because fitting and subtracting a polynomial is linear in x(t), we can
consider its effect on each frequency separately, so we need only consider the
case where x(t) = e2πift. In this case, the coefficiencts Ck(f) are given by

Ck(f) =
2k + 1

T

∫ −T/2
−T/2

Pk

(
2t

T

)
e2πift dt. (4)

The total variance of the original signal, x(t) = e2πift, is given by

σ2
0(f) =

1

T

∫ T/2

−T/2

∣∣e2πift∣∣2 dt = 1, (5)

whereas the variance of the approximating polynomial

x̂(t) =
n∑
k=0

Ck(f)Pk

(
2t

T

)
(6)

is given by

σ2(f) =
1

T

∫ T/2

−T/2
|x̂(t)|2 dt =

n∑
k=0

|Ck(f)|2

2k + 1
(7)

It follows that the transmission function, Tn(f), for fitting and subtracting a
polynomial of degree n is

Tn(f) =
σ2
0(f)− σ2(f)

σ2
0(f)

= 1−
n∑
k=0

|Ck(f)|2

2k + 1
. (8)

Equation (4) can be simplified by replacing t and f with the dimensionless
variables u = 2t/T and v = πfT , in which case it becomes

Ck(v) =

(
k +

1

2

)∫ 1

−1
Pk(u)eiuv du, (9)
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In particular, we have

C0(v) =
1

2

∫ 1

−1
eiuv du =

sin v

v
, (10)

C1(v) =
3

2

∫ 1

−1
ueiuv du =

3i(sin v − v cos v)

v2
, (11)

C2(v) =
5

4

∫ 1

−1

(
3u2 − 1

)
eiuv du =

5[(v2 − 3) sin v + 3v cos v]

v3
. (12)

Explicit expressions for Tn(v) for n = 0, 1, 2 may be obtained by substituting
these results into equation (8). In particular,

T0(v) = 1− sin2 v

v2
, (13)

T1(v) = T0(v)− 3(sin v − v cos v)2

v4
, (14)

T2(v) = T1(v)− 5[(v2 − 3) sin v + 3v cos v]
2

v6
. (15)

Qualitatively, each of these transmission functions rises from T = 0 at v = 0
to oscillate just under T = 1 at large values of v. We can find the asymptotic
behavior of the transmission function at low frequencies by expanding each
Ck(v) around v = 0. This gives

C0(v) = 1− v2

6
+

v4

120
− v6

5040
+O(v8), (16)

C1(v) = v − v3

10
+

v5

280
+O(v7), (17)

C2(v) = −v
2

3
+
v4

42
+O(v6). (18)

Substituting these series expansions into equation (8), we obtain

T0(v) =
v2

3
− 2v4

45
+

v6

315
+O(v8), (19)

T1(v) =
v4

45
− 4v6

1575
+O(v8), (20)

T2(v) =
v6

1575
+O(v8). (21)
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This means that, near f = 0, we have

T0(f) ∼ π2T 2

3
f 2, (22)

T1(f) ∼ π4T 4

45
f 4, (23)

T2(f) ∼ π6T 6

1575
f 6. (24)

One could continue this process to find the asymptotic behavior of Tn(f)
for higher values of n, but it turns out there’s a way to solve the problem for
arbitrary n. First, note that Ck(v) = O(vk) for each value of k considered so
far. This is true in general: expanding the right-hand side of equation (25)
in a power series in v gives

Ck(v) =

(
k +

1

2

) ∞∑
n=0

(iv)n

n!

∫ 1

−1
unPk(u)du, (25)

but since Pk(u) is orthogonal to all polynomials of degree less than k, all
terms with n < k are zero.

Since we can write
∞∑
k=0

Ck(v)Pk(u) = eiuv, (26)

it follows that

n∑
k=0

Ck(v)Pk(u) = eiuv −
∞∑

k=n+1

Ck(v)Pk(u)

= eiuv +O(vn+1)

=
n∑
k=0

(iuv)k

k!
+O(vn+1).

(27)

Up to terms of order vn+1, each side of this equation is a polynomial of degree
n in u. Equating the leading terms gives

1

2n

(
2n

n

)
unCn(v) =

inunvn

n!
+O(vn+1), (28)
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where we have used a well-known expession for the leading coefficient of
Pn(u). It follows that

Cn(v) =
(2iv)n

n!
(
2n
n

) +O(vn+1). (29)

Computing the total variance on both sides of equation (26) gives

∞∑
k=0

|Ck(v)|2

2k + 1
= 1. (30)

Combining this with equation (8) gives

Tn(v) =
∞∑

k=n+1

|Ck(v)|2

2k + 1
=
|Cn+1(v)|2

2n+ 3
+O(vn+2). (31)

It follows that, near v = 0,

Tn(v) =
(2v)2n+2

(2n+ 3)(n+ 1)!2
(
2n+2
n+2

)2 +O(vn+2), (32)

or, in terms of f ,

Tn(f) ∼ (2πT )2n+2

(2n+ 3)(n+ 1)!2
(
2n+2
n+1

)2f 2n+2. (33)

Substituting n = 0, 1, 2 into equation (33) reproduces the results of equa-
tions (22), (23), and (24). For n = 3, 4 we find

T3(f) ∼ π8T 8

99 225
f 8, (34)

T4(f) ∼ π10T 10

9 823 275
f 10. (35)

(36)

It is also possible to relax the assumption that the data are sampled
continously and uniformly, at least for T0(f) and T1(f). Suppose that the
data are instead sampled at N discrete times ti. For convenience, we can
assume that the mean of the sample times is zero:

1

N

N∑
i=1

ti = 0. (37)
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Let σ2, γ, and κ be the variance, skewness, and kurtosis of the sample times,
i.e.,

1

N

N∑
i=1

t2i = σ2, (38)

1

N

N∑
i=1

t3i = γσ3, (39)

1

N

N∑
i=1

t4i = κσ4. (40)

We can define an inner product between functions sampled at the times ti
by

〈x(t), y(t)〉 =
1

N

N∑
i=1

x(ti)y(ti). (41)

The three polynomials

p0(t) = 1, (42)

p1(t) = t, (43)

p2(t) = t2 − γσt− σ2 (44)

are orthogonal with respect to this inner product; that is, 〈pm(t), pn(t)〉 = 0
whenever m 6= n. They also satisfy〈

p0(t)
2
〉

= 1, (45)〈
p1(t)

2
〉

= σ2, (46)〈
p2(t)

2
〉

= (κ− γ2 − 1)σ4. (47)

Just as in the continuously sampled case, we can expand an arbitrary function
x(t) in terms of these polynomials, writing

x(t) = c0p0(t) + c1p1(t) + c2p2(t) + r(t), (48)

where the remainder r(t) is orthogonal to each of the previous terms, and
the coefficients are given by ck = 〈x(t), pk(t)〉. As before, to compute the
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transmission function, we must consider x(t) = e2πift. In this case, the
coefficients are given by

c0(f) =
1

N

N∑
j=1

e2πiftj , (49)

c1(f) =
1

N

N∑
j=1

tje
2πiftj , (50)

c2(f) =
1

N

N∑
j=1

(
t2j − γσtj − σ2

)
e2πiftj . (51)

The full transmission functions T0(f), T1(f), and T2(f) can be written

T0(f) = 1− |c0(f)|2, (52)

T1(f) = 1− |c0(f)|2 − |c1(f)|2

σ2
, (53)

T2(f) = 1− |c0(f)|2 − |c1(f)|2

σ2
− |c2(f)|2

(κ− γ2 − 1)σ4
, (54)

but cannot be expressed in any simpler form. However, in the low frequency
limit, the expressions do simplify somewhat. In particular, expanding e2πift

in a power series around f = 0, we have

c0(t) =
1

N

N∑
j=1

(
1 + 2πiftj − 2π2f 2t2j −

4π3

3
if 3t3j +

2π4

3
f 4t4j +O(f 5)

)
= 1− 2π2σ2f 2 − 4π3

3
iγσ3f 3 +

2π4

3
κσ4f 4 +O(f 5),

(55)

c1(t) =
1

N

N∑
j=1

(
tj + 2πift2j − 2π2f 2t3j −

4π3

3
if 3t4j +O(f 4)

)
= 2πiσ2f − 2πiγσ3f 2 − 4π3

3
iκσ4f 3 +O(f 4).

(56)

Substituting these results into equations (52) and (53) gives

T0(f) ∼ 4π2σ2f 2, (57)

T1(f) ∼ 4π4
(
κ− γ2 − 1

)
σ4f 4. (58)
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Using the variance σ2 = T 2/12, skewness γ = 0, and kurtosis κ = 9/5 for a
uniform distribution in these expressions reproduces equations (22) and (23).
A similar result is possible for T2(f), showing that it is asymptotically pro-
portional to f 6, but with a much more complicated coefficient.
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