
Memorandum 007

The NANOGrav TOA Generation Process

Ross Jennings

2021 September 29

http://nanograv.org/

The NANOGrav TOA generation process

Ross Jennings

September 29, 2021

The goal of this document is to describe the process of data reduction and
TOA generation used by NANOGrav, including the generation of intermediate
data files, in sufficient detail to allow it to be reproduced exactly.

1 Getting the software and data
The data reduction and TOA generation process makes use of several pieces of
software. The full list of requirements is:

• PSRCHIVE (http://psrchive.sourceforge.net/). This is the main
tool used to view and manipulate data in PSRFITS format. It consists pri-
marily of command-line utilities, written in C, but also has a Python inter-
face and a scripting language, psrsh. Traditionally, PSRCHIVE has been
installed by building it from source (see http://psrchive.sourceforge.
net/installation.shtml for full instructions). However, successfully
configuring the build tools can be challenging, especially if its dependen-
cies are installed in non-standard locations. A much easier way to install
it is using conda. Once a conda environment has been set up, PSRCHIVE
can be installed simply by running

conda install -c conda -forge psrchive

This should automatically handle downloading and installing dependen-
cies.

• psrtools (https://github.com/demorest/psrtools). This is a set of
two command-line utilities (autotoa and normalize_rms) that depend on
PSRCHIVE. Like PSRCHIVE, they are written in C, and can either be
built from source or installed with conda:

conda install -c demorest psrtools

• nanopipe (https://github.com/demorest/nanopipe). This is a collec-
tion of Python and psrsh scripts used to coordinate the various steps
of the NANOGrav calibration and TOA generation pipeline. It can be
installed by cloning the repository from GitHub:

1

http://psrchive.sourceforge.net/
http://psrchive.sourceforge.net/installation.shtml
http://psrchive.sourceforge.net/installation.shtml
https://github.com/demorest/psrtools
https://github.com/demorest/nanopipe

git clone
https :// github.com/demorest/nanopipe.git

cd nanopipe
pip install .

• toagen (https://gitlab.nanograv.org/nano-time/toagen). This is a
special-purpose repository which holds the full directory structure used for
the calibration and TOA generation process, including configuration files
which are not part of nanopipe. Currently access is limited to NANOGrav
members. It is hosted on NANOGrav’s internal GitLab server. If you are
a NANOGrav member but have not used GitLab previously, you will have
to log in to gitlab.nanograv.org with your NANOGrav username and
password and add an SSH key (user icon in upper right > Settings >
SSH keys) before you can access the repository. You can then clone it by
running:

git clone
git@gitlab.nanograv.org:nano -time/toagen.git

toagen is not an installable program or library, but rather contains a set
of configuration files and Makefiles that are used in the TOA generation
process, along with the current template profiles and .tim files for all
NANOGrav pulsars. It does not contain the actual profile .fits files, as
these are much to large to be version-controlled (see below).

• Profile data. The working copy of NANOGrav’s profile data is stored on
servers at WVU and is accessible from Bowser (bowser.phys.wvu.edu)
or the notebook server (notebook.nanograv.org). VEGAS, GUPPI, and
PUPPI data are stored under

/nanograv/timing/data/

The data files are grouped into directories by pulsar name (without the
“B” or “J” prefix), backend, and year, and are always in a directory called
rawdata at the lowest level. For example, the first part of an Arecibo
obervation of PSR J1713+0747 taken on March 29, 2013 can be found at

/nanograv/timing/data /1713+0747/ puppi /2013/
rawdata/puppi_56380_1713 +0747 _0542_0001.fits

Calibration scans are found in the same directories, and can easily be iden-
tified by the presence of cal in the filenames. Flux calibrator observations
are found in directories corresponding to the name of the flux calibrator.1

1A quasar, usually B1442+101 = J1445+099, but at Arecibo sometimes J1413+151, and
at GBT 3C190 is used for one 2011 observation. There are multiple directories with slight
variations on the name, and some with suffixes, but the most recent calibrator observations
all seem to go into 1442+101.

2

https://gitlab.nanograv.org/nano-time/toagen
gitlab.nanograv.org
notebook.nanograv.org

Some data from other telescopes used by NANOGrav are also available on
the WVU servers, although not in the same place as the GBT and Arecibo
data. YUPPI (VLA) data are stored under

/hyrule/data/users/pdemores/VLA/

and are grouped by semester and proposal number. Some CHIME data,
grouped by pulsar, are also available, under

/hyrule/data/CHIME/NANOGrav/

As of September 29, 2021, only observations of PSR J1713+0747 from
January to September of 2021 are available, but additional data should
be copied over soon.

2 Setup and directory structure
The basic processing scripts are contained in nanopipe. As established in the
instructions for nanopipe (https://github.com/demorest/nanopipe/blob/
master/doc/basic_instructions.txt), the work takes place in a base direc-
tory which has subdirectories for each pulsar being processed. Within toagen,
there is a separate base directory for each backend (ASP, GASP, PUPPI, GUPPI,
YUPPI).

Flux calibrator observations are stored in a separate directory, called fluxcal,
inside the base directory for each backend. Before processing the rest of the ob-
servations, one needs to create .fcal files from the flux calibrator observations.
This is done using the PSRCHIVE tool fluxcal:

fluxcal -f -e fcal

The results can be checked using the PSRCHIVE calibrator viewer, pacv.
The base directory for each backend also contains several psrsh scripts

(copied from nanopipe’s config directory): the basic list is

zap_minmax
zap_and_tscrunch
update_be_delay.psrsh
process_fluxcal
img_$be

Here $be is the backend name.
There should also be a configuration file called make_psr_make.config.py

in the base directory for each backend, containing, at minimum, these lines:

ver_id = "$project_id"
tscrunch_arg = "-J ../ zap_and_tscrunch"

Here $project_id is a string identifying the particular version of the processing
being carried out.

3

https://github.com/demorest/nanopipe/blob/master/doc/basic_instructions.txt
https://github.com/demorest/nanopipe/blob/master/doc/basic_instructions.txt

This basic setup is customized in a backend-dependent way in the real
NANOGrav TOA generation process, in ways that are captured in the toagen
repository. Once the scripts and configuration files are in place, a makefile
can be generated for each pulsar by running (from within the corresponding
subdirectory)

make_psr_make $basedir > Make.psr

For $basedir one should substitute the full path of the base directory. The
makefile can be used to produce TOAs by running

make -f Make.psr toas

(again from within the pulsar subdirectory). This command can be altered
to run several processes in parallel by adding the option -j $n_procs, where
$n_procs is the number of processes, or by replacing toas with another makefile
target from this list:

rf
calibration
zap
scrunch
templates
toas

to only run part of the analysis.

3 Per-pulsar makefiles
The main process is laid out in the per-pulsar makefiles (Make.psr), which are
generated by the make_psr_make script in nanopipe. The processing carried
out by Make.psr breaks down into the following seven steps, most of which
correspond directly to makefile targets:

1. Target rf: Combine the raw .fits files into .rf files. The raw data files
must be copied in from where they are stored on WVU’s servers. Several
corrections are applied at this stage, namely:

(a) Epoch error due to polyco REF_MJD precision in PSRFITS is cor-
rected. This accounts for the effects of a bug in PSRCHIVE, discov-
ered during the 9-year analysis, which meant that polyco reference
MJDs were not stored using enough numerical precision.

(b) Backend delays (stored in the BE_DELAY PSRFITS header item) are
set appropriately. These measure extra signal latency within each
backend, usually just digital filter latency, and are determined from
the backend design (not measured experimentally). For GUPPI and
PUPPI, the delay is a function of the number of channels and channel
bandwidth in the observation.

4

(c) ADC ghost image corrections (Alam et al. 2021, §2.3.1; cf. Kurosawa
et al. 2001) are applied.

(d) Par files are installed into the FITS header. This also means realign-
ing the profiles according to the par file being installed. Usually the
“predictive” par file from the previous data set is used here, if it is
available.

(e) The DM value in the FITS header is set appropriately. This DM value
is taken from the par file used above, and is used for de-dispersion
prior to frequency averaging.

(f) Specified bands are zapped and time-frequency zapping (Offringa
et al., 2010) is applied.

(g) The source and receiver names are fixed to make them uniform ac-
cross the data set.

If this process fails, the file is noted in the list of cal failures. Finally, the
database of calibrator archives is built up.

Commands:

psradd -T -j 'fix refmjd ' -J
../ update_be_delay.psrsh -J ../ img_$be -j
'install par $psr.basic.par' -j "e dm=$dm"
-J ../ zap_and_tscrunch_with_list_$tel -j "e
rcvr:name=`fix_receiver_name $obsj.fits `"
-j "e name=`get_proper_name $obsj.fits `" -o
$obs.rf $obs1.fits $obs2.fits

psradd -T -j 'fix refmjd ' -J
../ update_be_delay.psrsh -J ../ img_$be -J
../ zap_and_tscrunch_with_list_$tel -j "e
rcvr:name=`fix_receiver_name $calj.fits `"
-j "e name=`get_proper_name $calj.fits `" -o
$cal.cf $cal1.fits $cal2.fits

These commands (and the others quoted below) are taken from the Make.psr
file, but reformatted to make them independently runnable and as generic
as possible. The psrsh scripts

update_be_delay.psrsh
img_puppi
img_guppi
zap_and_tscrunch_with_list_gb
zap_and_tscrunch_with_list_ao

can be found in nanopipe’s config directory (however, the ones found in
nanopipe use zap median, as was done for the 12.5-year and earlier data
sets, rather than zap tfzap, used in toagen and the 15-year data set).
The Python scripts

5

fix_receiver_name
get_proper_name

can be found in nanopipe’s scripts directory.

2. Target calibration: Calibrate the data (.rf files) to produce .calib files.
This performs a very basic flux/polarization calibration (cal gain and
phase correction) using pac. Matching with the calibrator observations
is done on a per-channel basis, and the pulse phase of the cal transition is
set to 0.5 turns. Calibrator Stokes parameters are derived from the fluxcal
data. If this process fails, the file is noted in the list of cal failures. Then
the data goes through another round of RFI zapping, removing a specified
fraction of the band edge, as well as more specified frequency bands, but
these seem to mostly be duplicates. Any zapping options in the variable
$XPAZ are applied. Finally, if the file $obs.calib does not exist, the file
$obs.calibP is removed.

Commands:

pac -w
pac -a -j "config

SquareWave :: transition_phase =0.5" -x -e
x.calib -d database.txt $obs.rf

paz -m -E2.0 $zapchannels $(XPAZ) $obs.x.calib

$zapchannels is a space-separated list of -F options specifying channels
to zap on a per-receiver basis, configured in make_psr_make.

3. Target zap: Apply “min-max” zapping to produce .zap files.

Command:

psrsh -e zap ../ zap_minmax $obs.x.calib

The psrsh script zap_minmax can be found in nanopipe’s config direc-
tory. (But, just as for zap_and_tscrunch_with_list_$tel above, this is
an older version of zap_minmax that uses zap median rather than zap
tfzap. The zap tfzap version can be found in toagen.)

4. Target scrunch (1/2): Scale the weights so that the offpulse RMS of the
weighted data is 1, producing .norm files.

Command:

normalize_rms -w $obs.x.zap

5. Target scrunch (2/2): Frequency average to 64 channels, and time average
to a number of subintegrations set by the observation length (the length
divided by 1800 s, rounded down, plus one), to produce .ff files.

Command:

6

pam -e ff -f$factor --setnsub `psredit -Q -c
length $obs.x.norm | awk '{print
int($2 /1800.0) + 1}'` $obs.x.norm

$factor varies depending on the backend. It is 8 for receivers with 512
channels (GUPPI and PUPPI L-band, PUPPI S-band) and 2 for GUPPI
820 MHz, which has 128 channels.

6. Target templates: Iteratively determine the template and TOAs using
autotoa (an implementation of the method outlined in Chapter 2 of De-
morest 2007), with a list of all .ff files for this pulsar-frontend-backend
combination as input. Use a Gaussian of width 0.1 as the initial guess
for the template, and perform at most 3 iterations. Then rotate the final
profile by half a turn, and apply UD8 wavelet smoothing to it.

Commands:

for f in {$obs.ff}; do echo $f >> $rcvr.fflist
autotoa -g0.1 -i3 -S $rcvr.sum $rcvr.fflist
pam -r0.5 -m $rcvr.sum
psrsmooth -W -t UD8 $rcvr.sum

7. Target toas: Use pat to calculate the final narrowband TOAs from the .ff
files and template and write them to a .tim file in tempo2/IPTA format,
adding appropriate flags. Calculate errors using MCMC. Then use the
same .ff files to calculate wideband TOAs based on the 12.5-year wideband
templates, and write them to a .tim file with a similar format and flags.

Commands:

echo 'MODE 1' > $rcvr.nb.tim
pat -A FDM -e err=num -C chan -C subint -C snr

-C wt -C flux -C fluxe -f "tempo2 IPTA" -X
"-proc 15y -pta NANOGrav -ver TEMP
$(XFLAG)" -s $rcvr.sum.sm -M $rcvr.fflist
>> $rcvr.nb.tim

pptoas.py --print -flux --quiet
--flags=proc ,15y,pta ,NANOGrav ,ver ,TEMP$(XFLAG)
-m $rcvr .12y.x.avg_port.spl -d $rcvr.fflist
-o $rcvr.wb.tim

Acknowledgements
I thank Paul Demorest, who put together the current TOA generation process
and wrote several of the software tools used to implement it, for answering a
series of questions that made the current form of this document possible. I also
thank Michael Lam and Haley Wahl for providing feedback on early drafts.

7

References
Alam, M. F., Arzoumanian, Z., Baker, P. T., et al. 2021, ApJS, 252, 4, doi: 10.
3847/1538-4365/abc6a0

Demorest, P. B. 2007, PhD thesis, University of California, Berkeley. https:
//www.cv.nrao.edu/~pdemores/thesis.pdf

Kurosawa, N., Kobayashi, H., Maruyama, K., Sugawara, H., & Kobayashi, K.
2001, IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, 48, 261, doi: 10.1109/81.915383

Offringa, A. R., de Bruyn, A. G., Biehl, M., et al. 2010, MNRAS, 405, 155,
doi: 10.1111/j.1365-2966.2010.16471.x

8

http://doi.org/10.3847/1538-4365/abc6a0
http://doi.org/10.3847/1538-4365/abc6a0
https://www.cv.nrao.edu/~pdemores/thesis.pdf
https://www.cv.nrao.edu/~pdemores/thesis.pdf
http://doi.org/10.1109/81.915383
http://doi.org/10.1111/j.1365-2966.2010.16471.x

