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After a decade of great progress in understanding gas flow into, out of, and through the Milky
Way, we are poised to merge observations with simulations to build a comprehensive picture of the
multi-scale magnetized interstellar medium (ISM). These insights will also be crucial to four bold
initiatives in the 2020s: Gravitational Waves (GWs), Fast Radio Bursts (FRBs), cosmic B-mode,
and the Event Horizon Telescope (EHT).
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Figure 1: The interstellar medium (ISM): from spiral arms to star formation (design: S.E. Clark; image of M51: [1])

Introduction The interstellar gas gives birth to stars and receives their remains. Stellar ejecta
both enrich it chemically and energize it by heating, ionizing and stirring. Thus, as illustrated in
Figure 1, large-scale motions from supernovae create turbulence in the plasma, which in turn
competes with gravitational contraction. Though recent advances in indirect probing methods
have revealed a cascade in energy over 12 decades in scale, many basic questions remain about
the turbulence in both the neutral and ionized phases of the interstellar medium (ISM). We
highlight this exciting and wide-ranging science here.

A Decade of Challenge
• Develop a multi-scale understanding of the ISM beyond the power spectrum.
• Incorporate magnetic structure throughout, focusing on scale-dependent dimensionality.
• Link insights probed by different tracers (including radio and optical polarization, pulsar

dispersion and scintillation, Hα emission, Faraday rotation, H I emission and absorption,
and extinction) on radically different scales.
• Follow the energy flow from large-scale stirring to small-scale heating and cooling.
• Focus on a dynamical ISM and understand size-dependent timescales.
• Use the Milky Way as a guide to extragalactic and intergalactic gas.

Support Large-scale Projects
• Mitigate ISM effects and detect long-wavelength gravitational waves with a Pulsar Timing

Array (PTA).
• Add key propagation insights to interpret Fast Radio Bursts (FRBs).
• Use neutral hydrogen mapping to better constrain the polarized light foreground, making a

cosmic B-mode detection possible.
• Provide crucial scatter-broadening corrections for the Event Horizon Telescope (EHT).
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Probing the Structure and Energetics of the ISM
Without a deep, consistent, multi-scale understanding of the ISM and its magnetic field we do not
truly know how the Milky Way works. If we do not fully grasp the flow of gas into, out of, and
through the Milky Way, we fall short in understanding the development of other galaxies over
cosmic time. The problems continue to cascade throughout astrophysics. While the past decade
yielded great advances in our understanding of the ISM, driven by exciting new observations and
a much tighter connection between data and magnetohydrodynamic (MHD) simulations, our
insights are still relatively siloed and partial.

As one example, in Figure 2a we see multi-tracer evidence for a 3-D Kolmogorov, augmented by
recent in situ measurements of plasma density from the Voyager 1 spacecraft [2, 3, 4]. There is
enhanced power near the kinetic scales (e. g. Larmor and inertial scales). This strongly suggests a
turbulent energy cascade over twelve decades in scale that is terminated by dissipation at these
small scales. However, there is a disconnect between a pervasive turbulent plasma and the
presence of highly localized plasma concentrations that cause extremely anisotropic radiowave
scattering or refraction (e. g. [5]). Pulse broadening increases strongly with distance, indicating
that radiowave scattering grows very rapidly toward the inner Galaxy and is widely distributed.
This is a problem that needs a solution. Recent Voyager 1 measurements suggest turbulence in
our local region near the Sun. Such localized concentrations of turbulent plasma on ∼ 1 AU
scales combine the two concepts — appearing as spatially intermittent turbulence — but what are
the energy sources? There is no good explanation for the driver of a pervasive turbulence, nor is
there an accepted mechanism for containing the thermal pressure implied in localized plasma
concentrations. MHD simulations with the needed fidelity and resolution are just arriving (e. g.
Figure 2b) and will provide crucial clues for solving this puzzle.
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Figure 2: a) Multi-probe evidence for a Kolmogorov spectrum in plasma density, augmented recently from Voyager 1
data [2, 3, 4]. It implies a turbulent cascade over 12 decades in scale with a slight bump at the highest wavenumbers.
b) Images from a multi-phase ISM simulation. Pinkish-white areas, some of which may be analogous to the Local
Bubble, are cavities blown by supernovae [6].
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Requirements to Achieve Scientific Goals
The last ten years have produced many surprises in our study of the gas in the Milky Way: fibers
of neutral hydrogen stretching for tens of parsecs, aligned by the local magnetic field (Figure 3a);
dense networks of magnetic field gradient (Figure 3b); sheets of ionized gas intercepting pulsar
signals every hundred parsecs or so; compact plasma lenses of unknown origin affecting quasar
and pulsar radio signals and possibly linked to FRBs. A comprehensive understanding of neutral
and ionized gas in the Galaxy is within reach over the next decade as observations and simulations
converge on a picture of turbulent, magnetized flows that yield abrupt density variations in the
particular, but average, over long enough path lengths, into statistically stable turbulence cascades.

In other white papers we will highlight specific projects and facilities that will accelerate this
rapid progress. Here, we focus on the rich interlinked science that requires us to understand
magnetized gas dynamics over at least twelve orders of magnitude in spatial size1.
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Figure 3: a) Magnetic fiber orientation from GALFA-HI data compared with Planck polarized dust emission [7].
b) Gradient image of linear polarization, |∇P |, for an 18-deg2 region of the Southern Galactic Plane Survey [8].

On the one hand there is evidence for a cascade of turbulent waves over an astonishing twelve
decades in scale size. On the other hand, both in the neutral gas and in ionized hydrogen, discrete
structures abound that can be explored through a variety of techniques.

What will provide science breakthroughs in the 2020s? The rapidly increasing sophistication of
MHD modeling is starting to be up to the task by carefully incorporating the relevant physical
processes and scales (e.g. [6, 9, 10, 11, 12, 13]). There is also promising work in developing
statistical comparisons between these models and observations (e.g. [14, 15, 16]). However,
linking the sub-AU scales on which turbulence dissipates to the Galactic scales on which it is
driven remains a major numerical challenge. This will need to be coupled with continued
observations that delve further into the structure of the different phases of the ISM and their
interfaces.

The current generation of single-dish 21-cm surveys (GALFA-HI, HI4PI) is unlikely to be
superseded for a while, which is most relevant to the diffuse, high-latitude ISM. However, the
plane will be surveyed by interferometers, e.g. GASKAP. There will, however, be a major
advance in the next decade in HI spin temperature measurements with SKA and its pathfinders

1For comparison, twelve orders of magnitude in ocean size scale runs from the largest ocean waves (∼ 30m) to the
size of an atom!
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[17]. An increase in the number of HI Zeeman measurements of the field strength of similar
proportions is possible (see the accompanying white paper by S.E. Clark and C. Heiles).

If molecular clouds form at the interfaces of streams of warm gas, we need to understand how
those streams form and interact [17, 18, 19, 20].

As shown in Figure 4 we have a rich set of diagnostics at our disposal to explore the ISM.
Bow-shock nebulae provide a nearly perfect in situ probe of the gas being ionized by pulsar ram

1994 / WFPC2 2001 / WFPC2 2006 / ACS

(a) (b)

Figure 4: a) HST imaging of the time evolution of the tip of the Guitar nebula, an Hα bow shock nebula produced
by the supersonic motion of the pulsar B2224+65, provides an in situ probe of structure in the interstellar medium.
Image is 15′′ in size, and structure on 0.1′′ scales corresponds to length scales∼ 80 AU [21]. b) WHAM Sky Survey
[22, 23], showing all-sky Hα emission from the WIM and H II regions.

pressure[21]. Targeted Hα observations[24] have begun to yield new ISM structures on arcsecond
scales as well as constraints on warm neutral medium filling fractions. Additionally, the
IPHAS[25] and VPHAS[26] surveys continue to image the Hα distribution down to 1 arcsecond
along the Galactic plane, using 2–4 m optical telescopes. The all-sky WHAM view of Hα
emission emphasizes the dynamic and multi-scale nature of the ionized gas [22, 23].

High-cadence pulsar timing provides a wealth of scientific dividends beyond the primary goals of
probing neutron star physics and gravitational wave science. As shown in Figure 5, the rapid
space velocities of pulsars (typically 100’s of km/s) scan through the ISM and uncover
unexpected and unexplained structure in the parsec – AU range. Greater observing bandwidths
will also increase the range of spatial scales probed by multipath progagation [27]. Continuing
improving VLBI capabilities can resolve scattering screens [28] and thus improve small-scale
ISM measurements.
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Figure 5: Two chromatic timing events in the millisecond pulsar J1713+0747 presumably caused by discrete ISM
structures [29].
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Additional Science Dividends
In addition to core science goals, ISM studies will benefit astrophysics in at least two other ways.

First, the ISM is a serious foreground for several decade-long efforts: i) opening another
gravitational wave window using a PTA, ii) unlocking the secrets of FRBs, iii) detecting a cosmic
B-mode signal, and iv) imaging the Milky Way’s central black hole with the EHT.
Proof-of-concept has been produced for mitigating foreground effects. Now, we must develop
robust implementation strategies, a 10-year effort in some cases.

Second, several high-cadence monitoring projects (PTAs, pulsar and FRB searches) produce a
wealth of information about the ISM. Synoptic telescopes like CHIME, HIRAX and DSA2000
will produce high-cadence, multifrequency data sets on many objects (pulsars and FRBs),
yielding important ISM information. In the case of PTAs, high-precision ionized column densities
and scatter-delay measurements are made weekly or biweekly. Figures 5 and 6 show some of the
unexpected events that have occurred or may appear in this rich data set, which will grow to about
100 sight lines through the Galaxy in the 2020s, sampled as often as daily. The ability to detect
and rapidly follow up on ISM events will complement other synoptic monitoring efforts such as
the LSST.

Summary
Surprises from the last ten years emphasize that the ISM is a multi-scale medium threaded with
tangled and ordered magnetic fields that dominate its dynamics in many cases. Continued support
of this science in the next ten years will yield crucial payoffs for US and international
astrophysics: from the interaction with star formation, not discussed here; through the gas
dynamics of the Milky Way including numerous episodes of large-scale infall and expulsion; and
by the feedback mechanisms associated with supernovae and powerful stellar winds. Knowing
the full energy budget of the Milky Way leads to clear insights about external galaxies and galaxy
assembly through cosmic time. In addition, the science sketched here provides crucial support to
some key initiatives of the 2020s.

(a) (b)
Figure 6: a) Intensity disturbance due to lens intercept[30] b) Secondary spectra for the pulsar B1737+13 taken 6
days apart[5].
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G. Barentsen, J. Eislöffel, H. J. Farnhill, W. E. Martin, J. R. Walsh, N. A. Walton,
M. Mohr-Smith, R. Raddi, S. E. Sale, N. J. Wright, P. Groot, M. J. Barlow, R. L. M. Corradi,
J. J. Drake, J. Fabregat, D. J. Frew, B. T. Gänsicke, C. Knigge, A. Mampaso, R. A. H.
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