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ABSTRACT

These are notes on pulsar signal models and methods for deconvolving scattering

broadening or otherwise mitigating scattering delays for pulsar timing. They were writ-

ten in 2012 so there are consequently no recent references. The document is in slide

format for the most part without a comprehensive narrative between topics. Two retro-

spective comments: The applicability of the mean shift regime is limited, as discussed

in Fundamental Noise Processes in Pulsar Timing (JMC et al. 2025 in preparation).

However, phase retrieval using the Hilbert transform appears to be a promising avenue

of research for scattering corrections.

1. Outline

Outline:

1. Basics: DISS and AMN definitions

2. Frequency domain quantities

3. Intrinsic AMN fluctuations (examples in figures)

4. Statistics of the frequency ACF

5. Signal flow diagrams and setting up inverse problems

6. Timing perturbations from the ISM

7. Correction regimes for scattering

8. Mean shift regime

9. Requirements and methods for incoherent deconvolution

10. Requirements for coherent deconvolution (phase space)

11. Methods for coherent deconvolution (including cyclic spectroscopy, phase retrieval using

Hilbert transform)

Notation: As is common, h(t) is used to denote the impulse response of a linear filter. There

should be no confusion with the dimensionless strain produced by gravitational waves (GWs) since

the context of the discussion here is different and more general than for GW applications.
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Scattering and Scintillation in the ISM

Terms:

Diffraction (aka scattering) causes multipath propagation of a pulsar signal that leads to

pulse broadening and scintillation. Diffraction is caused by very small scales ℓ ≲ 106 km.

Refraction from larger scale structures causes TOA variations and modification of the

diffraction pattern.

Diffraction angle:

θd =
λ

2πℓd
,

where ℓd is the diffraction scale (the spatial size of an intensity maximum in the diffraction

pattern).

Pulse broadening: the field and intensity broadening functions are

h(t) and p(t) = |h(t)|2.

Pulse broadening time: is defined as the 1/e time scale of the intensity PBF p(t), usually

obtained from long-term averages

τd ≈
Dθ2d
2c

.

Scintillation bandwidth: is defined as the HWHM of the autocorrelation function of the

intensity spectrum I(ν)

∆νd =
C1

2πτd
,

where C1 ≈ 1 is a constant that depends on the distribution and wavenumber spectrum of

scattering material.

Scintillation time scale, the characteristic time for intensity variations. Using Equations

C4-C6 from CR98 for the case where the effective transverse velocity is dominated by the

pulsar velocity, we have

∆td =
ℓd
Veff

≈ λ

2πVp⊥

(
D

2cτd

)1/2

=
c

2πνVeff

(
D

2cτd

)1/2

≈ 108 sec

νV100

(
D

2cτd

)1/2

,

for ν in GHz, Veff in units of 100 km s−1, D in kpc, and τd in µs.
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Amplitude Modulated Noise (AMN)

For an amplitude a(t) that modulates complex white, Gaussian noise m(t) with statistics

⟨m(t)⟩ = 0 and ⟨m(t)m∗(t′)⟩ = M0∆(t− t′),

where ∆(t) is a delta-function like quantity with ∆(0) = 1. The pulsar wavefield is

εi(t) = a(t)m(t).

The measured wavefield is the sum of the pulsar wavefield modified by the impulse response h(t)

for scattering in the ISM and additive, complex noise n(t)

ε(t) = h(t) ∗ εi(t) + n(t) = h(t) ∗ [a(t)m(t)] + n(t).

The additive noise is radiometer noise and has statistics similar to those for m(t) with M0 replaced

by N0, i.e. ⟨n(t)n∗(t′)⟩ = N0∆(t− t′).

The Fourier transform of ε is

ε̃(ν) = h̃(ν) [ã(ν) ∗ m̃(ν)] + ñ(ν).

where the forward FT is defined with a kernel exp(−2πiνt).
AMPSN: A more realistic model for the pulsar signal replaces m(t) with complex, polarized shot

noise. Observations of the Crab pulsar support this model.

SAMPSN: A further extension includes scintillations as done above.
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Frequency Domain Quantities

The spectrum of the pulsar signal is

Si(ν) = |ε̃i(ν)|2

and the field autocorrelation function (ACF) is

Γε̃i(ν, α) = ε̃i(ν + α/2)ε̃∗i (ν − α/2).

For AMN the ensemble average correlation function is

⟨Γε̃i(ν, α)⟩ =

∫∫
dt1dt2 a(t1)a(t2)⟨m(t1)m

∗(t2)⟩e−2πi[(ν+α/2)t1−(ν−α/2)t2]

= M0

∫
dt1 a

2(t1)e
−2πiαt1

≡ M0Ã(α),

where A(t) ≡ a2(t) is the intensity modulation that can be aperiodic or periodic. The ensemble

average spectrum is then

⟨Si(ν)⟩ = ⟨Γε̃i(ν, 0)⟩ = M0Ã(0). (1)

We include the ISM by using the pulse-broadening function h(t) defined below. The PBF h(t)

changes on the diffractive scintillation time scale. We can therefore calculate the average ACF

over an ensemble of the AMN while considering, in effect, a single realization of h(t). We could

just as well consider h(t) to be deterministic. Excluding additive noise for now, we get

⟨Γε̃(ν, α)⟩ = ⟨Γε̃i(ν, α)⟩Γh̃(ν, α) = M0Ã(α)Γh̃(ν, α).

For a periodic amplitude modulation with period P that extends over a time span T = NpP ,

a(t) =

Np−1∑
j=0

a1(t− jP ),

we have

Ã(ν) = P−1Ã1(ν)δ(ν − k/P ).

The frequency correlation function is discretely sampled at harmonics αk = k/P ,

⟨Γε̃(ν, α)⟩ = P−1M0Ã1(αk)Γh̃(ν, αk)δ(α− αk).

Re-do using DFT and definition of discrete sinc function put into appendix
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Intrinsic AMN Fluctuations

The AMN signal yields two kinds of fluctuations. First are those arising from the noise process,

m(t). The second kind is from stochastic variations of the amplitude modulation, a(t), including

the phase jitter described above but also from amplitude variations of individual pulses.

The AMN signal is broadband but has a characteristic frequency scale ∼ W−1
A that results from

the convolution of ã(ν) with m̃(ν), where WA is a characteristic width of A(t). For a spectrum

obtained using an FFT of length T ≫ WA, the following inequalities hold:

1

T
≪ 1

WA

≪ B.

E.g. for a total bandwidth B = 100 MHz and a pulse width WA = 100 µs, a spectrum obtained

from a T = 1 s long FFT we have

1 Hz ≪ 10 kHz ≪ 100 MHz.

The spectrum Si(ν) of the AMN signal has 100% fluctuations because it is a χ2
2 random variable.

The frequency domain ACF Γε̃i(δν) also has 100% fluctuations when calculated from a single

Fourier transform.

Both the spectrum and the ACF are correlated over a frequency scale ∼ 1/WA. The frequency

correlation scale can be seen in plots given below.

When averaged over Nb data blocks, fluctuations in the spectrum and the ACF decrease by N
−1/2
b .
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Properties of h(t)

h(t) will typically have the form of an envelope function that multiplies a noise-like process. The

noise process is actually a consequence of the particular path lengths that the radiation field has

from diffraction and is therefore persistent over time scales much less than the scintillation time

∆tISS.

It is therefore useful to think of two times: one describes variations on time scales of order the

inverse bandwidth (ns) and the other “epochal” time is on the time scale of ∆tISS. The time “t”

in h(t) refers to the fast time scale and the epochal time dependence is implicit.

For other cases it may turn out that there are only a few ray paths on which radiation arrives and

the impulse response can be written as a sequence of delta functions:

h(t) =
∑
j

ajδ(t− tj).

Figure 1 shows an example PBF.

Other useful quantities are the Fourier transform of h(t), h̃(ν), and the frequency ACF,

Γh̃(ν, δν) = h̃(ν + δν/2)h̃∗(ν − δν/2).

The spectrum is simply

H(ν) = |h̃(ν)|2 = Γh̃(ν, 0). (2)

The FT of H(ν) is, by the Wiener-Khinchine theorem, the temporal ACF of h(t),

Γh(t, τ) = h(t)h∗(t+ τ).
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Example PBF

Fig. 1.— Example pulse broadening function consisting of a one-sided exponential function that multiplies complex

Gaussian noise, h(t) = e−t/τU(t)n(t) where U is the unit step function and n(t) is a noise process that is the same

for macroscopic times less than the scintillation time ∆tISS. The top panel shows the real and imaginary parts of

h(t) along with the envelope function shown as dashed lines. The middle panel shows the phase, and the bottom

panel shows the intensity PBF, p(t) = |h(t)|2, along with the envelope function shown as a dashed line.
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AMN Components, Example 1: Single Pulse

Figure 2 shows the components of the scattered AMN signal in both the time and frequency

domains. Additional examples are shown at the end of the document.

Fig. 2.— Components of scintillated amplitude modulated noise in the time and frequency domain. Amplitudes

are plotted in blue, phases in red.
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Signal Flow Diagram for Pulse Broadening

The field PBF is related to the ACF of its Fourier transform and to the intensity PBF according to

the following diagram. Two-sided arrows denote Fourier transforms while downward arrows show

irreversible processes (squared magnitude and correlation) that remove information:

h(t) ←→ h̃(ν)

| · |2 ↓ ↓ ACF

p(t) = |h(t)|2 ←→ Γh̃(δν) = h̃(ν + δν/2)h̃∗(ν − δν/2)

Terminology:

h(t) is the DISS impulse response or field PBF

p(t) = |h(t)|2 is the intensity PBF.

The Fourier transform of a single data block would yield a spectrum I(ν) = |h̃(ν)|2 that has 100%
fluctuations because it has χ2

2 statistics.

It can be shown that the ACF Γh̃ also has 100% variations.

Ensemble averages of p and Γh̃ are estimated by averaging these quantities over multiple data

blocks.

Inverse problem: The goal is to determine h when we have, say, the ACF of its FT, Γh̃(δν).

This is the same as determining h̃ from the magnitude of its FT, which is |h| =
√

p(t).

In practice statistical measures include the pulsar signal along with the PBF. For sake of discussion,

if we ignore the pulsar contribution, we could use the following approach: (I think this isn’t correct

because h̃ is not “causal” (i.e. one-sided) in the frequency domain the way h IS causal in time.)

1. Estimate Γh̃(δν) from data.

2. Calculate p = |h|2 from the IFT of Γh̃.

3. Determine the minimum-phase of the FT using the Hilbert transform (HT), ϕHT = HT
{
log
√
p
}

4. Calculate the real and imaginary parts of hHT(t) as (hr, hi)HT =
√
p(cosϕHT, sinϕHT).

5. Update the HT solution using any additional constraints and by least-squares optimization.
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Example Fourier Relationships for a Realization of h(t)

Fig. 3.— Fourier relationships for an example PBF consisting of an exponential envelope that multiplies complex

Gaussian noise. The time constant for the ensemble average p(t) is τ = 7.1 (arbitrary units). Top left: the real and

imaginary parts of h(t). Top right: DFT of h(t), h̃(ν). Bottom right: the ACF of Γh̃(δν). Bottom left: the directly

calculated intensity PBF, p(t), and that calculated from the inverse DFT of the ACF, p̂(t).
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Reciprocal Signal Flow Diagram for Pulse Broadening

An alternative diagram describes the reciprocal case where the correlation and squared-magnitude

operations are applied in the opposite domains than previously:

h(t) ←→ h̃(ν)

ACF ↓ ↓ | · |2

Γh(τ) = h(t)h∗(t+ τ) ←→ H(ν) = |h̃(ν)|2

Inverse problem: The goal is to determine h, as before, but now we have the the magnitude of

its FT,
√
H. The numerical problem is the same, determining a function from its ACF or from

the magnitude of its FT.
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Relationship to the Secondary Spectrum

The alternative signal-flow diagram can be extended to include the secondary spectrum. In this

case we consider a perfectly coherent signal from the pulsar (i.e. a delta function in time) so that

the secondary spectrum H2(τ) is a function of just the scattering:

h(t) ←→ h̃(ν)

ACF ↓ ↓ | · |2

Γh(τ) = h(t)h∗(t+ τ) ←→ H(ν) = |h̃(ν)|2

Spectrum of h(t)

| · |2 ↓ ↓ ACF

H2(τ) = |Γh(τ)|2 ←→ ΓH(δν)

SecondarySpectrum

Inverse problem: A new problem presents itself: from the secondary spectrum we can get the

magnitude of the ACF of h, from which we can try to determine the complex ACF, Γh(τ) and

other quantities, in turn. The advantage is that Γh can be averaged over many scintillation time

scales.
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Signal Flow Diagram for Pulsar Signal + ISM

ε(t) = h(t) ∗ εi(t) ←→ h̃(ν)ε̃i(ν)

| · |2 ↓ ↓ ACF

I(t) = |⟨ε(t)|2⟩

⟨I(t)⟩ = A(t) ∗ ⟨p(t)⟩
←→

Γε̃(δν) = Γh̃(δν)Γε̃i(δν)

⟨Γε̃(δν)⟩ = Ã(δν)p̃(δν)
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SAMN Intensity Statistics Example 1

Figure 4 shows intensity-like quantities and their second moments in the time and frequency

domains. The frequency domain quantities have been averaged over 103 realizations of the intrinsic

pulsar signal while holding fixed the interstellar field PBF. The average spectrum ⟨Si(ν) (shown as

a dotted line) is converged to within a fractional variation ∼ 10−3/2 of a constant value. Similarly,

the spectrum ⟨S(ν) of the scattered wavefield has converged to H(ν) to the same precision.

Other examples can be found in Figures 39 to 41 for other averages of 10, 100 and 104 realizations.

Fig. 4.— Time domain intensity-like quantities are shown on the left. Frequency-domain quantities are on the

right. The dotted lines in the plots for Si(ν) and S(ν) are averages over 103 realizations. The ISM transfer function

H(ν) is kept fixed for all realizations, so the average of S(ν) tends toward the shape of H(ν). The ACFs Γε̃i and

Γε̃ are averaged over 103 realizations, as indicated.
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Fluctuations of Spectra and ACFs

The SAMN signal has a spectrum

S(ν) = |ε̃(ν)|2

that has an ensemble mean

⟨S(ν)⟩ =
〈
|ε̃(ν)|2

〉
≡ ⟨Γε̃(0)⟩ ≡M0H(ν)Ã(0).

The variance of S(ν) follows by considering ε̃ to be a complex Gaussan process, which it is by

virtue of applying the CLT to the FT:

Var {S(ν)} =
〈
|ε̃(ν)|4

〉
−
〈
|ε̃(ν)|2

〉2
= ⟨S(ν)⟩2.

Γε̃(δν) is another second moment whose variance is given by a fourth moment of the field. As

before the ensemble mean of the ACF is (excluding the contribution from additive noise)

⟨Γε̃(δν)⟩ = M0Γh̃(δν)Ã(δν)

and its second moment is

⟨|Γε̃(δν)|2⟩ = |⟨Γε̃(δν)⟩|2 + ⟨S(ν + δν/2)⟩⟨S(ν − δν/2)⟩.

The variance is therefore

Var {Γε̃(δν)} = ⟨S(ν + δν/2)⟩⟨S(ν − δν/2)⟩.

and the fractional error is

[Var {Γε̃(δν)}]1/2

Γε̃(δν)
=

[⟨S(ν + δν/2)⟩⟨S(ν − δν/2)⟩]1/2

M0H(ν)Ã(0)
=

[H(ν + δν/2)H(ν − δν/2)]1/2

H(ν)
,

which is 100% at the origin.
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Variance of Frequency-domain Quantities (no-ISM case)

Consider the frequency-domain ACF of the intrinsic field ε(ν) combined with additive noise, ñ(ν),

excluding for now the effects of the ISM:

Γε̃(ν, α) = ε̃(ν + α/2)ε̃∗(ν − α/2).

The ensemble mean of the ACF is

⟨Γε̃(ν, α)⟩ = M0Ã(α) +N0Nt∆(α),

where M0 = ⟨|m(t)|2⟩, N0 = ⟨|n(t)|2⟩, ∆(α) is a Kronecker delta like function with ∆(0) = 1. To

calculate the ACF’s variance we need the second moment of Γε̃(ν, α),〈
|Γε̃(ν, α)|2

〉
= ⟨ε(ν + α/2)ε∗(ν − α/2)ε∗(ν + α/2)ε(ν − α/2)⟩ .

To simplify, we assume complex Gaussian statistics for both m(t) and n(t) so that the fourth

moment of each of these can be expanded into the product of second moments. We consider an

FT of Nt time samples defined as

Ã(ν) =
∑
t

A(t)e−2πiνt.

We relate the zero-frequency Fourier amplitude to the mean of A as

Ã(0) = NtĀ.

The variance is then

Var [Γε̃(ν, α)] ≡
〈
|Γε̃(ν, α)|2

〉
− | ⟨Γε̃(ν, α)⟩ |2

= ⟨Si(ν + α/2)⟩⟨Si(ν − α/2)⟩+ ⟨Sn(ν + α/2)⟩⟨Sn(ν − α/2)⟩
+⟨Si(ν + α/2)⟩⟨Sn(ν − α/2)⟩
+⟨Si(ν − α/2)⟩⟨Sn(ν + α/2)⟩

= N2
t

(
M0Ā+N0

)2
.

We define the signal-to-noise ratio of the correlation function as(
S

N

)
Γε̃

=
Γε̃(ν, α)

Var1/2 [Γε̃(ν, α)]
=

Ã(α)/Ã(0) + (N0/M0Ā)∆(α)

1 +N0/M0Ā
.

The S/N does not depend on frequency in this model (which assumes a flat spectrum for the pulsar

signal). At zero lag (α = 0) the S/N is unity as expected for analysis of a single data block of

a complex Gaussian process (which each of ε̃i and ñ and their sum are). When summed over Nb

data blocks, the S/N is larger by a factor
√
Nb. If the ratio of the mean noise level N0 to average

pulse amplitude Ā is large, the S/N is accordingly smaller. However, the
√
Nb increase in S/N still

applies.
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Variance of Frequency-domain Quantities (with ISM)

It is easy to include the ISM into the ACF variance calculation. For deconvolution purposes we

need the ACF calculated over a time less than the DISS time scale. By definition the field PBF is

(nearly) constant in epochal time for times much less than the DISS time, so in effect h(t) can be

considered deterministic. Using the ACF defined previously,

Γh̃(ν, α) = h(ν + α/2)h∗(ν − α/2),

the ACF of the scintillated AMN signal has ensemble-average mean

⟨Γε̃(ν, α)⟩ = Γh̃(ν, α)Γε̃i(ν, α) + Γñ(ν, α)

= Γh̃(ν, α)M0Ã(α) +N0Nt∆(α).

It is useful to normalize the FT Ã(α) by Ã(0) and to use the arithmetic mean Ā =
∫
dtA(t) =

N−1
t Ã(0) and then write

⟨Γε̃(ν, α)⟩ = Nt

[
M0ĀΓh̃(ν, α)Ã(α)/Ã(0) +N0∆(α)

]
The variance is then

Var [Γε̃(ν, α)] ≡
〈
|Γε̃(ν, α)|2

〉
− | ⟨Γε̃(ν, α)⟩ |2

= |Γh̃(ν, α)|
2⟨Si(ν + α/2)⟩⟨Si(ν − α/2)⟩+ ⟨Sn(ν + α/2)⟩⟨Sn(ν − α/2)⟩

+H(ν + α/2)⟨Si(ν + α/2)⟩⟨Sn(ν − α/2)⟩
+H(ν − α/2)⟨Si(ν − α/2)⟩⟨Sn(ν + α/2)⟩

= N2
t

{
|Γh̃(ν, α)|

2
(
M0Ā

)2
+N2

0 + [H(ν + α/2) +H(ν − α/2)]M0N0Ā
}

The S/N of the ACF is(
S

N

)
Γε̃

=
Γε̃(ν, α)

Var1/2 [Γε̃(ν, α)]

=
Γh̃(ν, α)Ã(α)/Ã(0) + (N0/M0Ā)∆(α){

|Γh̃(ν, α)|2 + (N0/M0Ā)2 + [H(ν + α/2) +H(ν − α/2)]N0/M0Ā
}1/2

.

At zero lag, Γh̃(ν, 0) = H(ν) and the S/N is unity, again as expected. At lags near zero (α = 0+),

we have (
S

N

)
Γε̃(0+)

=
1

1 +N0/M0ĀH(ν)
.

The S/N is unity when the signal is much stronger than the additive noise.
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Timing Perturbations

TOAs are perturbed in several ways by the ISM, including dispersion, scattering, and refraction.

The latter two are closely related to diffractive and refractive interstellar scintillation (DISS, RISS).

Dispersion: Dispersive arrival times vary deterministically with frequency. Even though

there are stochastic variations in time, we assume that DM at any epoch is known well

enough that there is no perturbation from any error.

Pulse broadening: Since the pulse-broadening function is causal, convolution of it with

the intrinsic pulsar signal always leads to a delay that should be corrected. In addition there

are applications that can benefit from deconvolution of the PBF to obtain the intrinsic pulse

shape. We therefore distinguish between TOA correction and deconvolution since the former

does not necessarily require the latter.

The TOA perturbation from h(t) is twofold:

Mean delay: Because h(t) is causal, there is always a positive shift of the arrival

time. For an interstellar medium with stationary statistics, the ensemble average of

p(t) = |h(t)|2 is a stable function with a well defined mean time ⟨t⟩.

Finite-scintle variations: The noiselike aspect of h(t) yields variations about the

mean delay that are related to the finite number of scintles that are included in any

data set used to calculate the TOA.

Refraction perturbations: Refraction causes angle-of-arrival variations on times scales of

days to months or longer. These produce additional timing perturbations as discussed in

Cordes & Shannon (2010).
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Pulse Broadening Function

Pulse broadening from multipath scattering in the ISM is described by a pulse-broadening

function (PBF) that is convolved with the emitted pulse shape to produce the measured

pulse.

We identify three time-averages for PBFs, based on the amount of time averaging. The

“instantaneous” PBF is constant over a time scale less than a scintillation time ∆td. The

PBF applicable to a long time average spanning many scintillation times at a given epoch

is a “snapshot” average (Narayan & Goodman 1989) that may be statistically precise but

will not have converged to the ensemble average because slow, refractive modulations will

alter the PBF on time scales up to years and longer associated with the broad distribution

of length scales in electron-density irregularities. We find it convenient to separate the long,

refractive modulations from the shorter term variations in the PBF and therefore will refer

to ensemble averages that pertain to a wavenumber spectrum that is effectively truncated at

wavenumbers less than the refraction or multipath wavenumber (e.g. Cordes et al. 1986) and

then acknowledge the existence of time variations in the PBF, especially the mean pulse-

broadening time, caused by larger-scale refractive scales.

The characteristic pulse-broadening time is τd ∼ Dθ2d/2c where θd is the diffraction angle

and D is an effective distance. The timing perturbation is related to the width of the PBF,

which is strongly wavelength dependent (∝ λ4). The pulse broadening times in Figure 5

demonstrate that they are a strong function of both DM. The empirical fit from Bhat et al.

(2004)is log τd = −6.46 + 0.154 logDM + 1.07(logDM)2 − (3.86 ± 0.16) log ν, with a scatter

±0.65 in log τd.

We write the PBF as pd(t) = pd(t)+δpd(t). where pd is the ensemble-average shape1 expected

from a particular medium and consider it to be a slow function of epoch. By constrast, δpd
encapsulates fast departures from the ensemble average. Defining pd(t) to have unit area,

the characteristic broadening time is

τ d =

∫
dt t pd(t) = τd + δτd, (3)

and its ensemble average as τd.

The scintillation bandwidth and the mean pulse broadening time τ d are related by2

2πτ d∆νd = C1, (4)

1This might also be called a “snapshot” average using the language of Narayan & Goodman (1989), which takes

into account that a statistically precise measurement at a given epoch is still not a good ensemble average because

there are long-term refraction effects. Our approach is to treat refraction effects as a separate modulation imposed

on a statistically precise average at a given epoch.
2Our definitions of ∆νd and τd follow Cordes & Rickett (1998), i.e. ∆νd is the HWHM of the intensity ACF

vs. frequency lag and τd is the mean delay of the PBF. This differs from Lambert & Rickett (1999), who use

alternative definitions of τd in a similar expression and thus quote different values of C1 than we use here.
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where C1 depends on all the properties of the medium (Cordes & Rickett 1998; Lambert &

Rickett 2000), such as the wavenumber spectrum, its thickness and location along the (LOS)

and on its transverse extent (Cordes & Lazio 2001). For simple media, values of C1 can be

calculated. For a thin screen unbounded transverse to the LOS and with a circular Gaussian

angular scattering function, the PBF is a one-sided exponential function with 1/e time scale

τd. In this case the mean time delay is also τd so that C1 = 1. For media that are plausibly

relevant to pulsar scattering, C1 can vary by a factor of nearly two (Cordes & Rickett 1998;

Lambert & Rickett 1999).
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Scattering Correction Regimes

Different views on correction: The TOA perturbation from DISS is associated with the

frequency structure in the scattered wavefield. This structure decorrelates on a scintillation

time scale, ∆tISS (by definition). The perturbation amplitude has a mean component and a

variation about the mean. The mean perturbation is related to the pulse-broadening time,

τd. The variations result from the changing number of scintles in the spectrum combined

with τd. One philosophy is to correct the pulse shape and TOA on time scales smaller than

∆tISS even if the total integration time spans multiples of ∆tISS. Another approach is to

average over multiple ∆tISS and deconvolve the intensity profile. This approach may be less

exact but likely will have better S/N.

There are three regimes for the correctabilty of the delay:

1. Mean shift regime: In this regime the pulse broadening time is much smaller than

the pulse width: τd ≪ WA. The TOA shift is simply the mean of the pulse broadening

function (Cordes et al. 1990; Hemberger & Stinebring 2008; Cordes & Shannon (2010))

t̄ =

∫
dt tp(t)∫
dt p(t)

. (5)

If the shape of p is somehow known, a determination of τd at each epoch from a variety

of methods is all that is needed. Generally, however, the shape is not known as studies

of secondary spectra have shown.

2. Coherent deconvolution regime: In this regime, it is possible to determine the field

PBF h(t) from the wavefield ACF. This determination is not unique but it may be

sufficient to correct TOAs and deconvolve the pulse shape. Inference of h(t) must be

done on a time scale smaller than the scintillation time ∆tISS, which limits the signal-

to-noise ratio.

3. Incoherent deconvolution regime: For pulsar-frequency combinations where the

scattering is very large (e.g. τd ∼ ∆tISS), it is not possible to determine h(t). However,

the pulse can be deconvolved using a template bank of possible intensity PBFs to

determine (nonuniquely) both p(t) and the intrinsic pulse shape. An advantage of this

approach is that the deconvolution can be done on pulses with long integration times

≫ ∆tISS that provide high signal-to-noise ratios.

Non-uniqueness issues: As always, additive noise disallows any unique determination of the

PBF. More fundamental, however, is that the starting point is often a correlation function of

one of the PBFs or its Fourier transform. It is well known that many functions can have the

same correlation function, so the inverse problem does not have a unique solution. However, for

PBFs the allowed solutions are restricted by causality of the PBF and by the positivity of the

deconvolved pulse shape.

Minimum-delay PBFs: If the PBFs have the minimum delay property, determination of h(t)

or p(t) from one of the relevant correlation functions can be done uniquely.
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Mean Shift Regime I

Conceptually, the mean shift defined in Eq. 5 is related to the ACF of h as follows:

Γh̃(δν) ≡ p̃(δν) =

∫
dt e−2πiδνtp(t).

Taking the derivative with respect to δν, we have

∂δνΓh̃(δν) = −2πi
∫

dt e−2πiδνt t p(t).

Assuming for simplicity that p(t) is normalized to unit area, we then have

t̄p =
i

2π
∂δν [Γh̃(δν)]δν=0 .

Since p is real, Γh̃ is Hermitian and the derivative at the origin is purely imaginary, allowing us to

write

t̄p = −
1

2π
∂δν Im [Γh̃(δν)]δν=0 .

Because p is also causal, the derivative of the imaginary part is negative, yielding t̄p ≥ 0.

If p(t) has arbitrary area, then

t̄p =
i

2π
∂δν [ln Γh̃(δν)]δν=0 .

For the actual pulsar signal, we obtain the frequency ACF

Γε̃(δν) = Γh̃(δν)Ã(δν) = p̃(δν)Ã(δν).

Using the same approach as before, the TOA shift associated with Γε̃ is

t̄ε = −
1

2π
∂δν Im [Γh̃(δν)]δν=0 = t̄p + t̄A,

where the shift associated with the true pulse shape is

t̄A = − 1

2π
∂δν Im

[
Ã(δν)

]
δν=0

.

The pulse shift t̄A is arbitrary with respect to how the time origin for A(t) is defined. For a

symmetric profile delayed to a time t0, we would have t̄A = t0.

For an asymmetric pulse shape and an arbitrary delay t0, the total delay obtained from the

derivative of Γε̃(δν) is

t̄ε = t̄p + t̄A + t0.
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The Mean-Shift Regime II

A case of interest for nearby pulsars or observations at high frequencies is where the pulse broad-

ening time is small compared to the pulse width, τd ≪ W but where the strong scintillation regime

applies. This requires that the scintillation bandwidth ∆νd ≪ ν or, equivalently, τdν ≫ 1. We

specify the mean-shift regime as

C1

2πν
≪ τd ≪ W or 0.2 ns ν−1

GHz ≪ τd ≪ 1 ms Wms. (6)

Under these conditions the TOA perturbation is simply the pulse broadening time calculated from

Eq. 5 using the instantaneous PBF (not the ensemble-average PBF). The TOA perturbation also

depends on the number of scintles contributing to an observation. In many cases it is large and

the TOA perturbation converges to some mean value. This requires that ∆νd ≪ B, where B is

the bandwidth, or that ∆tISS ≪ T , where T is the total time of the observation. Figure 5 yields

the range of DM for which the shift approximation applies: τd < 1 ms for DM ≲ 100, 250 and

400 pc cm−3 at 0.4, 1 and 2 GHz, respectively.

One approach to timing precision is to require that τd be smaller than some specified rms timing

error, σmax, which might be 100-ns or less for pulsar timing array applications but could be much

larger for other timing purposes (such as pulsars in the Galactic center). If τd < σmax, pulse

broadening might be ignored entirely. Alternatively, it might be corrected to a fractional precision

ϵτ , yielding a residual error ϵττd < σmax. Using the empirical fit for τd vs. DM shown in Figure 5,

we can then solve for DM(ν) for different σmax. Results are shown in Figure 5. The smallest pulse

broadening occurs in the lower-right portion of the diagram whereas objects with large DMs are

strongly affected by pulse broadening. Many pulsars have steep spectra, so the choice of frequencies

for a given object requires a compromise.

When the shift approximation holds, the TOA can be corrected by subtracting τ d from nominal

values (Hemberger & Stinebring 2008).

However, because by definition τ d is small, we cannot measure it directly at the frequency of the

TOA measurements. There are several ways to estimate it, however.

Correlation Approach

The timing delay τd can be estimated by using Eq. 4, where the characteristic scintillation band-

width ∆νd is calculated as the half-width at half maximum of the intensity correlation function

ΓδI(δν) that is calculated from the dynamic spectrum I(ν, t). This approach requires knowledge

of the shape of the PBF so the type of medium must be known to determine the appropriate value

for C1. Alternatively, a characteristic time τS2 can be calculated from the secondary spectrum, the

squared-magnitude of the Fourier transform of the dynamic spectrum (e.g. Stinebring et al. 2001),

which is related to the autocorrelation function of the PBF. The relationship of τS2 to τd is also

medium dependent and requires knowledge of their ratio that is analogous to knowing C1. The

correction of TOAs for the mean PBF delay is therefore problematic unless ancillary constraints
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Fig. 5.— (Left) Pulse broadening time plotted against DM for pulsar data used to construct the

NE2001 model (Cordes & Lazio 2002). The solid curve shows the parabolic fit given in the text

for log τd. and the dashed curves show ±1.0σ deviations from the fit. Open circles are inferred

values using scintillation bandwidth measurements; filled circles are direct measurements of τd.

Downward arrows denote upper limits. All measurements have been scaled to 1 GHz assuming

τd ∝ ν−4.4 and the right-hand scale for 2 GHz assumes the same scaling. The strong scattering

regime is assumed, which requires τd ≫ C1/2πν or τd ≫ 2×10−4 µs at 1 GHz. At lower frequencies,

the entire range of τd in the plot satisfies the requirement. Leftward arrows designate maximum

values of DM for which τd < 1 ms at 0.4, 1 and 2 GHz using the nominal parabolic fit. (Right)

Contours of constant pulse broadening time, τd, using the fit shown in Figure 5 including the ±1σ
uncertainty in the fit, which results in the widths of the shaded regions. A τd ∝ ν−4.4 scaling with

frequency is used. This scaling is steeper than appropriate for some high DM objects but is typical

for low-DM pulsars.

on the scattering physics are known, namely whether a thin screen or extended-medium applies,

whether the scattering region is bounded transverse to the LOS, what the wavenumber spectrum is,

etc. The secondary spectrum provides much of this information (Stinebring et al. 2001; Hemberger

& Stinebring 2008).

The broadening time can be estimated from the scintillation bandwidth obtained at a frequency

ν ′,

τ̂d(ν
′) =

Ĉ1

2π∆̂νd(ν ′)
, (7)

where quantities requiring an estimate or an assumed value are hatted. The broadening time can
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be scaled to other frequencies using

τ̂d(ν) = τ̂d(ν
′)
( ν

ν ′

)−X̂PBF
. (8)

The estimation error of the chromatic term and thus on t∞ expands into terms dependent on

individual errors, δC1, δ∆νd, and δXPBF:

δτd = τd − τ̂d ≈ τd

[
δC1

C1

− δ∆νd
∆νd

− δXPBF ln
ν

ν ′

]
. (9)

Based on estimates of scintillation bandwidths in the literature, the range of possible values of C1,

and the error in the exponent, δXPBF, the combined error in δτd is unlikely to be less than 10%

with this approach. However, a 10% error in removing pulse broadening implies that the shaded

bands in Figure 5 will shift to the left by about a factor of 1.8 in frequency (0.26 in log ν).

Secondary Spectrum Approach

Phase Retrieval Methods

A second, empirical approach requires much less a priori knowledge about the scattering medium.

It calculates the complete PBF using only a measurement of the ACF of the PBF or, equivalently,

the magnitude of the PBF’s Fourier transform. The ACF of the PBF can be obtained from the

secondary spectrum, for example. Walker et al. (2008) apply two-dimensional phase retrieval to

the secondary spectrum and demonstrate the general principle. For the one-dimensional ACF

with nτ lags, there are nτ functions that can produce the measured ACF. Many of these are

acausal or include negative values and can therefore be ruled out. Those that remain include the

function with minimum delay and its time reverse, which has maximum delay. Methods exist to

calculate the minimum-delay PBF from the ACF, which is the unique member in the large family

of PBFs consistent with the ACF that has its amplitude most concentrated toward the origin in

a mean-square sense (Scargle 1981). While physically a minimum-delay solution is not demanded

by scattering and refracting geometries, it may be the most probable result given that scattering

and refraction angles have distributions peaked at zero. Also it may provide a more accurate

correction compared to use of an idealized form for the PBF used to provide a value for C1 in the

correlation method. Application of inversion techniques has been explored in unpublished work

(JMC). Another approach (P. Demorest & M. Walker, private communication) investigates the

phase of the wavefield directly to determine the PBF.
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Incoherent Deconvolution

When the scattering time τd is too large for the mean-shift regime to apply and where the signal-to-

noise required for coherent deconvolution is not achieved, the PBF can be deconvolved incoherently

from the measured pulse shape. Incoherent deconvolution is tricky because the PBF is unknown

and so it must be assumed (e.g. Kuz’min & Izvekova 1993) or deduced from the data (Bhat et al.

2004). To be useful, the pulse-broadening time τd must be large enough to be “discernible,” so

we define this as meaning that it is larger than some fraction ϵ of the pulse width W . Defining

also the sample time across the pulse profile (i.e. the sample interval in pulse phase expressed in

temporal units), ∆tp we have the inequalitites

B−1 ≪ ∆tp ≲ ϵW ≲ τd.

Defining the duty cycle fDC = W/P we define appropriate regions in the frequency-time plane by

requiring

τd ≳ ϵW = ϵfDCP.

Figure 6 shows demarkation lines using this relation for 0.1, 0.4, 1.4, and 2 GHz assuming a

constant duty cycle fDC = 0.05. If a period-dependent duty cycle is used, fDC ∝ P−1/2, the curves

are not dramatically different except for small periods where the duty cycle is large, requiring a

larger broadening time to satisfy the condition. Since the MSPs used in precision timing have

pulse widths much narrower than predicted by the scaling that applies to long-period pulsars, the

fixed duty-cycle curves appear appropriate.
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Fig. 6.— Regions in the DM-Period plane where it is efficacious to incoherently deconvolve the pulse-broadening

function. The region above each line indicates the region for the frequency labeling each line.
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Requirements for Coherent Deconvolution I

The primary observable is the wavefield ε (e.g. the baseband signal) and the primary statistic for

extracting the field PBF h(t) and the unscattered pulse is the ACF Γε.

Determining h(t) or equivalently h̃(ν) from the ACF of h̃ or from the intensity PBF p(t) = |h(t)|2
is the classic problem of determining a function from the magnitude of its Fourier transform.

There are two kinds of requirements:

1. Integration times, pulse widths, scattering times and bandwidths must satisfy certain rela-

tionships. These in turn can put constraints on the periods P and dispersion measures DM

that are amenable to coherent deconvolution.

2. There needs to be adequate signal-to-noise ratio so that the ACF Γϵ can be well estimated.
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Requirements for Coherent Deconvolution II

Using Γε(α) to determine h(t) has the following requirements:

1. By assumption, scattering matters because the strong-scattering regime applies:

∆νd ≪ ν or τd ≫
1

2πν
.

2. A more restrictive constraint arises by requiring that a scintle be no wider than the band-

width, 2∆νd ≲ B, or

τd ≳
1

πB

3. The data span T used to calculate an FT combined with the number of data blocks Nb

needed to improve statistical variations of Γε̃ from pulsar self noise must satisfy

NbT ≪ ∆td ≈
c

νVeff

(
D

2cτd

)1/2

Keeping statistical variations smaller than a fractional error σΓε̃,max
/|Γε̃| implies the number

of blocks must satisfy

Nb ≥
(
|Γε̃|

σΓε̃,max

)2

4. The frequency resolution needs to resolve scintles of width ∼ ∆νd:

∆ν =
1

T
≪ 1

2πτd
or T ≫ 2πτd

5. The ACF needs to be sampled adequately. Since it factors into Ã(αk) and Γh̃(αk), we require

∆α =
1

P
≪ W−1

A or P ≫ WA

and

∆α≪ 1

2πτd
or P ≫ 2πτd

6. To have sufficient frequency resolution, the FT can be calculated over one or more pulse

periods

T ≥ P



– 30 –

Requirements for Coherent Deconvolution III

For the purpose of defining regimes in P and DM, we consider the following inequalities:

WA ∼ 2πτd ≪ P ≤ T ≪ ∆td
Nb

or putting in explicit DM and frequency dependences,

2πτd(DM, ν)≪ P ≤ T≪ c

2πνVeffNb

(
D

2cτd(DM, ν)

)1/2

.

We replace the extreme inequalities “≪” with a factor F = 5 and we use a nominal number of

blocks Nb = 104 to yield 1% errors in the ACF Γε̃:

10πτd

(
F

5

)
≲ P ≲ 10−4.7

(
5

F

)(
104

Nb

)
× c

2πνVeffNb

(
D

2cτd(DM, ν)

)1/2

.

To evaluate the constraints we use the empirical fit for pulse broadening times from Bhat et al.

(2004) assuming τd ∝ ν−4,

log τd(ms) = −6.59 + 0.129 logDM+ 1.02(logDM)2 − 4 log ν.

There is significant scatter about this expression that should be included in the analysis. That

will come later.

We therefore have two constraints on period as a function of τd (which depends implicitly on DM)

that define a region in the P-DM plane where deconvolution is possible.

Equality of the two constraints on P , 2πτd = ∆tISS/Nb corresponds to equality of the pulse broad-

ening time to the diffractive scintillation time scale divided by the time for one block, as applies

to low-frequency observations of high-DM pulsars:

τd =

[
cD

2(2π)4(νVeffNb)2

]1/3
=

67ms

(νV100)2/3
D1/3

N
2/3
b

=
144µsD1/3

(νV100)2/3

(
104

Nb

)2/3

.

Somewhat counterintuitively, a larger pulse broadening time can be tolerated for more distant,

lower velocity pulsars observed at low frequencies.

Figures 7 to 10 show regimes at four frequencies for Nb = 10, 100, 103 and 104 blocks.
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Coherent Deconvolution Regimes for Nb = 10

Fig. 7.— Regions in P −DM space where it is advantageous to attempt coherent deconvolution and the conditions

for coherent deconvolution are satisfied. This figure is for an analysis of Nb = 10 blocks, which corresponds to 31%

error in the average correlation function. The blue shaded regions correspond to where either the condition 2πτd ≪ P

or P ≪ ∆td/Nb is not satisfied. At 1.4 and 2 GHz, the blue region at the bottom of each frame arises because the

total scattering delay is small enough, τd ≲ 2ν−1 ns, so that deconvolution is not necessary given larger contributions

to timing errors. In all four frames, the apex of the allowed (clear) region corresponds to 2πτd = ∆td/Nb. The

vertical dashed line marks the period of the apex. The vertical error bars indicate the range of the associated curves

corresponding to the range of pulse broadening seen at a given DM. A fractional bandwidth B/ν = 0.2 has been

assumed.
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Coherent Deconvolution Regimes for Nb = 100

Fig. 8.— Regions in P −DM space where it is advantageous to attempt coherent deconvolution and the conditions

for coherent deconvolution are satisfied. This figure is for an analysis of Nb = 100 blocks, which corresponds to

10% error in the average correlation function. The blue shaded regions correspond to where either the condition

2πτd ≪ P or P ≪ ∆td/Nb is not satisfied. At 1.4 and 2 GHz, the blue region at the bottom of each frame arises

because the total scattering delay is small enough, τd ≲ 2ν−1 ns, so that deconvolution is not necessary given

larger contributions to timing errors. In all four frames, the apex of the allowed (clear) region corresponds to

2πτd = ∆td/Nb. The vertical dashed line marks the period of the apex. The vertical error bars indicate the range of

the associated curves corresponding to the range of pulse broadening seen at a given DM. A fractional bandwidth

B/ν = 0.2 has been assumed.
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Coherent Deconvolution Regimes for Nb = 103

Fig. 9.— Regions in P −DM space where it is advantageous to attempt coherent deconvolution and the conditions

for coherent deconvolution are satisfied. This figure is for an analysis of Nb = 103 blocks, which corresponds to

3% error in the average correlation function. The blue shaded regions correspond to where either the condition

2πτd ≪ P or P ≪ ∆td/Nb is not satisfied. At 1.4 and 2 GHz, the blue region at the bottom of each frame arises

because the total scattering delay is small enough, τd ≲ 2ν−1 ns, so that deconvolution is not necessary given

larger contributions to timing errors. In all four frames, the apex of the allowed (clear) region corresponds to

2πτd = ∆td/Nb. The vertical dashed line marks the period of the apex. The vertical error bars indicate the range of

the associated curves corresponding to the range of pulse broadening seen at a given DM. A fractional bandwidth

B/ν = 0.2 has been assumed.
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Coherent Deconvolution Regimes for Nb = 104

Fig. 10.— Regions in P−DM space where it is advantageous to attempt coherent deconvolution and the conditions

for coherent deconvolution are satisfied. This figure is for an analysis of Nb = 104 blocks, which corresponds to

1% error in the average correlation function. The blue shaded regions correspond to where either the condition

2πτd ≪ P or P ≪ ∆td/Nb is not satisfied. At 1.4 and 2 GHz, the blue region at the bottom of each frame arises

because the total scattering delay is small enough, τd ≲ 2ν−1 ns, so that deconvolution is not necessary given

larger contributions to timing errors. In all four frames, the apex of the allowed (clear) region corresponds to

2πτd = ∆td/Nb. The vertical dashed line marks the period of the apex. The vertical error bars indicate the range of

the associated curves corresponding to the range of pulse broadening seen at a given DM. A fractional bandwidth

B/ν = 0.2 has been assumed.
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Methods for Coherent Deconvolution

1. Solve for h(t) given the spectrum S(ν). This could make use of phase retrieval with the HT

combined with other constraints such as a maximum entropy term in the cost function for the

deconvolved pulse profile to enforce positivity and identifying zeros in the z-transform of h(t).

2. Solve for h(t) using the frequency ACF Γε(ν, α). The maximum entropy cost can be used here

too.

Idealized cases: First we see how well h(t) can be determined from the magnitude of its Fourier

transform H(ν). This corresponds to the case where the pulsar signal is a delta function.

Another idealized case consists of determining h(t) from measurements of the correlation function

Γh̃(ν, α).

Realistic cases: Actual data involve determination of the PBF and an arbitrary pulse shape A(t)

from measurements of the spectrum

S(ν) = H(ν)|ε̃i(ν)|2

and the field ACF

Γε(ν, α) = Γh̃(ν, α)Γε̃i(ν, α).

Both of these can be averaged over as many data blocks Nb as are allowed by the DISS time scale.

The larger Nb is, the lower the contribution from self noise to S(ν) and Γε(ν, α).
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Phase Retrieval for Causal Pulse Broadening Functions

By Fermat’s principle, the PBF is causal3. Treating the PBF as a filter that describes scattering

in the ISM, we can consider the following:

Theorem: A general causal filter can be written as the product of theminimum-

phase filter and a set of single-stage all-pass filters.

The power of this theorem is that the field PBF may be determinable uniquely from measurements

that provide only partial information, such as the magnitude |h̃(ν)| and autocorrelation function

Γh̃(ν)(ν, δν) of the Fourier transform of the PBF, h̃(ν).

If the true PBF has the minimum-phase property, it can be determined uniquely. An exponential

decaying PBF satisfies this criterion as do other monotonically decaying functions. If the PBF

does not have this property, it may still be determined uniquely from perfect data (i.e. with no

contribution from pulsar self-noise or additive noise) by combining the minimum-phase solution

with all-pass filters, the number of which will depend on how much scattering there is.

The approach explored below is as follows:

1. Determine the minimum-phase ϕHT from the Hilbert transform of the magnitude of the FT,

|h̃(ν)|, and then determine the PBF hhHT (t), and the implied mean PB time, t̄HT.

2. Characterize how well t̄HT can be used as an estimate by itself as the true PB time.

3. Explore calculation of a better restoration by using additional information from the data to

define all-pass (AP) filters that augment the HT solution, in accordance with the decom-

position theorem for causal filters. For this, we fit for the parameters of the AP filters by

requiring a good fit to the ACF, Γh̃(ν)(ν, δν), by the corresponding ACF calculated from the

HT and AP filters.

3While causality of the PBF is clear in principle, there are practical issues in defining the relevant time origin.

For a pulse of arbitrary shape and width, the definition of the arrival time depends on a choice for a fiducial

time within the pulse. Dispersion and refraction from large scale structure both cause energy to arrive later than

in a vacuum. In principle these can both be removed by exploiting their frequency dependences (ν−2 and ν−4,

respectively). However, any intrinsic frequency dependence of the pulse shape will couple with interstellar effects

to introduce uncertainty in the arrival time.
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Idealized Cases for Determining h(t) I.

Phase retrieval from the magnitude |h̃(ν)| using only the Hilbert transform: we consider

cases where the PBF is a one-sided exponential that modulates complex noise and has a nominal

(ensemble average) time scale τd (in the intensity). The mean time delay is τd but realization-to-

realization variations are a factor of two smaller or larger. Using only the Hilbert transform to

retrieve the phase for scattering times of only a few samples, we find that the true scattering time

(which differs statistically from τd) is never smaller than the scattering time calculated from the

HT solution, as expected. In some cases, the two are equal while on average the ratio is of order

0.5.

Figure 11 shows a case4 where the retrieved PBF is completely consistent with the true PBF for a

nominal τd = 3.1. A case is shown in Figure 12 where the retrieved PBF is concentrated closer to

the origin than the true PBF. Scrutiny of the true and retrieved phases in the figure shows that

there are similarities at some frequencies but there are a few frequency ranges where the phase

rotation is much more rapid.

Interpretation: The HT solution is the “minimum phase” solution which really means “mini-

mum delay.” The HT solution is consistent with the available data (the magnitude of h̃(ν)) but

concentrates power as close as possible to the time origin. One can see in Figure 12 that the HT

phase matches some of the variations in the true phase but the true phase shows more total phase

wrap across the band. This suggests that if there is a way to identify where these phase wraps

occur in frequency and fit for them, that the true phase variation can be retrieved.

4The results in Figures 11-15 use N = 1024-point DFTs with no zero-padding. Since the PBFs used have 1/e

time scales τd ≪ N , they decay to zero well within the first half of the time-domain vector, even including the long

exponential tail. Bias from the inherent periodicity of the DFT is therefore avoided.
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Fig. 11.— Example of phase retrieval using the HT for an exponential PBF where the retrieved and true pulse

broadening times are equal. The nominal broadening time is τd = 3.1 in arbitrary units so the 1/e time in h(t) is

2τd. From top to bottom the frames show the complex PBF, the magnitude of its FT, the phase of the FT, the

minimum-phase calculated from the HT of log |h̃(ν)|, and the resulting predicted h(t).
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Fig. 12.— Example of phase retrieval using the HT for an exponential PBF where the retrieved pulse broadening

time is substantially less than the true time. The nominal broadening time is τd = 3.1 in arbitrary units so the 1/e

time in h(t) is 2τd. From top to bottom the frames show the complex PBF, the magnitude of its FT, the phase

of the FT, the minimum-phase calculated from the HT of log |h̃(ν)|, and the resulting predicted h(t). The phase

curves in the third and fourth panels from the top are nearly identical except for fast phase rotations in the true

phase at frequency indices ∼ 430, 620, and 800. These can be modeled with all-pass filters that augment the HT

solution to bring the net model and actual phase curve into agreement. The nominal broadening time is τd = 3.1 in

arbitrary units so the 1/e time in h(t) is 2τd. From top to bottom the frames show the complex PBF, the magnitude

of its FT, the phase of the FT, the minimum-phase calculated from the HT of log |h̃(ν)|, and the resulting predicted

h(t).
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Idealized Cases for Determining h(t) II.

Properties of the Hilbert-transform solution for the pulse-broadening function: Fig-

ures 13-15 show the mean pulse-broadening (PB) time for the true PBF plotted against the mean

PB time using the HT solution along with a scatter plot and histogram of their ratio. The three

figures cover progressively larger pulse-broadening times. For small PB times less than one sample,

the HT solution is highly likely to be equal to the true PBF. For larger PB times from 5 to 50

samples, the PB time calculated from the HT solution (t̄HT) tends toward a constant fraction of

the true PB time (t̄). For intermediate cases where the PB time is one to five samples, the HT

solution gives the correct PB time in some cases but not in others. Later we show that in this

regime the HT solution can be augmented with a series of all-pass filters that can yield the true

PBF.

Correction methods in the mean-shift regime: Based on these results we define three meth-

ods whose choice depends on the degree of scattering:

1. Method 1 for large scattering times (many samples): Use the HT solution and scale the PB

time t̄HT on the basis of simulations to get the TOA correction.

2. Method 2 for small scattering times (less than one sample): Use the PB time calculated from

the HT solution as the TOA correction.

3. Method 3: For intermediate scattering times of one to about 10 samples, start with the HT

solution and augment it with cascaded all-pass filters whose parameters are constrained by

the data.
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Fig. 13.— Top panel: Mean scattering time from the HT solution plotted against the mean time for the actual

PBF. The solid line is a least-squares fit to the plotted data, 0.06717 + 0.6727x. The dashed line shows equality

of the estimated and true times. The true time is never smaller than the estimated time, as expected for the

minimum-delay solution. Five different ensemble-mean values from 0.1 to 10 time units were used from 0.1 to 1

time samples. Bottom left: scatter plot of the ratio R = t̄HT/t̄. Bottom right: Histogram of R with its mean and

rms values indicated. For the small pulse broadening times shown here, the vast majority of the Hilbert-transform

solutions for the PBF are identical to the true PBF.



– 42 –

Fig. 14.— Top panel: Mean scattering time from the HT solution plotted against the mean time for the actual

PBF. Five different ensemble-mean values from 0.1 to 10 time units were used from 1 to 5 time samples.The solid

line is a least-squares fit to the plotted data, y = 0.3446+0.5989x. The dashed line shows equality of the estimated

and true times. The true time is never smaller than the estimated time, as expected for the minimum-delay solution.

Bottom left: scatter plot of the ratio R = t̄HT/t̄. Bottom right: Histogram of R with its mean and rms values

indicated. For these larger pulse broadening times, there are fewer cases where the Hilbert-transform solutions for

the PBF are identical to the true PBF, as reflected in the smaller mean value of R.
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Fig. 15.— Top panel: Mean scattering time from the HT solution plotted against the mean time for the actual

PBF. Five different ensemble-mean values from 0.1 to 10 time units were used from 5 to 50 time samples.The

solid line is a least-squares fit to the plotted data, y = −0.2988 + 0.7278x. The dashed line shows equality of the

estimated and true times. The true time is never smaller than the estimated time, as expected for the minimum-

delay solution. Bottom left: scatter plot of the ratio R = t̄HT/t̄. Bottom right: Histogram of R with its mean and

rms values indicated. For these larger pulse broadening times, none of the the Hilbert-transform solutions for the

PBF are identical to the true PBF. However the ratio R clusters around a mean value ∼ 0.7 with the degree of

scatter decreasing with larger pulse-broadening time, as seen in the bottom left panel. This is associated with the

number of scintles contained within the spectrum, which increases with larger pulse-broadening time.
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Fig. 16.— Histograms of the ratio t̄HT/t̄ of the mean PB time obtained from the Hilbert-transform solution to

the true mean PB time for 1000 realizations in each case. The columns are for different lengths of FFTs (1k, 4k,

and 16k) and the rows are for different values of the pulse broadening time, expressed relative to the length of the

FFT. Each plot is labelled with the mean and rms ratio.
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Fig. 17.— Plot of the ratio t̄HT/t̄ vs. τd/NFFT for three FFT lengths (1k, 4k, and 16k) based on averages over

1000 realizations for each plotted point. Error bars on the mean value are visible for some of the points.
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Fig. 18.— Histograms of the ratio t̄/τd for different τd/NFFT and three FFT lengths (1k, 4k, and 16k). Each

frame is labelled with the mean and rms ratio. As expected the mean values are unity or close to it and the rms

values decrease in going from the top-left case to the bottom-right case because the number of implied scintles

contributing to a given point increases.
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Method 1 for Calculating δTOA in the Mean-Shift Regime

A basis for TOA correction: Figure 16 shows histograms of the ratio of the mean PB time

calculated using the HT solution to the true PB time on a realization by realization basis5. The

true PB time for a given realization varies statistically from the ensemble average τd because the

true PBF is calculated as an exponential envelope that multiplies complex Gaussian noise. The

centroids of the histograms are near a ratio t̄HT/t̄ ≈ 0.7 to 0.8 but there is a small variation vs the

ratio τd/NFFT. For a fixed value of this latter ratio, the histograms get progressively narrower with

increasing NFFT because there are more scintles (correlated intensity maxima) across the spectrum

and, evidently, the ratio scales as the inverse square root of this number.

The number of scintles Nscintles is proportional to the total bandwidth B = 1/∆t divided by the

scintillation bandwidth: Nscintles = ηB/∆νd = (2πη/C1)Bτd for quantities in dimensional units

(where the proportionality constant is η ≈ 0.2 and C1 depends on the shape of the ensemble-

average PBF; for an exponential shape, C1 = 1). For τd expressed in samples and C1 = 1 this

becomes Nscintles = 2πη(τd/NFFT)NFFT. For fixed τd/NFFT, Nscintles scales linearly with the FFT

length and we expect the histogram width to scale as ∼ N
−1/2
scintles. Similarly for fixed FFT length,

Nscintles scales linearly with τd. Thus the width of the histogram is largest in the top left of Figure 16

and decreases toward the right or downward.

The mean trend of the ratio of pulse-broadening times is plotted against τd/NFFT in Figure 17,

where each plotted point is based on 1000 realizations of the phase retrieval. For small values of

τd/NFFT the ratio is larger for smaller FFT lengths but the ratio asymptotes to the same value for

τd/NFFT ≳ 0.1.

5The results shown use DFTs that are zero-padded to twice the length of the actual time series in order to avoid

wrap-around effects. This allows pulse broadening times up to about 20% of the time series length to be included.

The 1/e time of the field PBF is 2τd if τd is the 1/e width for the intensity. If the field PBF has a long tail extending

to 3× 2τd, then without zero-adding, avoiding wrap-around requires 6τd < NFFT/2 or τd/NFFT < 1/12.
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Method 1 Application

Algorithm: These results suggest that, at least for the stochastic-exponential PBF, that the mean

Hilbert-transform time t̄HT can be scaled to the true mean time of the PBF. In the mean-shift

regime, this implies that TOA correction is very simple:

1. Calculate the spectrum S(ν) = |ε̃(ν)|2 averaged synchronously over as many pulse periods

as allowed by the DISS time ∆tISS. For Nb,max ≈ ∆tISS/P ≫ 1, self noise in the pulsar signal

will cause a fractional error in S(ν) that scales as N
−1/2
b,max. Additive noise will scale the same

way but the net error depends on the signal-to-noise ratio.

2. Use the Hilbert transform and the spectrum to obtain the minimum-delay solution for the

PBF and the resulting mean time, t̄HT.

3. Use the ratio R = t̄HT/t̄ to scale the HT mean time to an estimate for the TOA correction,

∆TOA = R−1t̄HT. The ratio R depends on the data-block length and the pulse-broadening

time as discussed above, so defining the ratio relies on additional information (such as an

estimate of the scintillation bandwidth) or can be gotten iteratively.

4. Calculate the TOA from the pulse profile for the same set of data using standard methods.

5. Subtract ∆TOA from the nominal TOA.

6. The accuracy of the correction depends on the number of scintles in the band and, of course,

on the number of blocks averaged and on the S/N of the pulsar signal.
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Notes on Applying the Hilbert Transform

Phase retrieval using the HT on the magnitude of h̃(ν) typically underestimates the pulse broad-

ening time, as shown above.

The underlying reason is that the true phase can undergo one or more wraps that are not captured

by the HT solution.

Wraps can be added to the HT solution by applying one or more all-pass (AP) filters. A single-

stage AP can add up to 2π of phase change across the full frequency band and most of the change

can be concentrated in a narrow frequency range through suitable choice of the amplitude of the

pole. If the amplitude of the pole is zero, the impulse response is simply a Kronecker delta yielding

a delay of one time step.
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Properties of All-pass Filters

A single-stage AP filter is parameterized by a single complex number a = |a|eiθ, which is the

pole of eik/N . It produces up to 2π radians of phase rotation across the frequency band with the

amount and bandwidth of largest phase gradient determined by |a|. The location of the largest

phase gradient is determined by θ.

Figure 19 shows an AP filter that has a pole at eiω = 0, i.e. |a| = 0, which yields a linear phase

change of 2π with a negative slope, corresponding to a time delay of one sample. This filter simply

shifts the input by one sample. Concatenating β stages corresponds to the single-stage filter being

taken to the power β, which yields a total phase change of 2πβ and a shift by β samples.

Figure 20 shows a family of filters for fixed θ = 180◦ for different magnitudes of a.

Figure 21 shows a family of AP filters for fixed |a| = 0.8 for different θ.

Fig. 19.— Plots showing the properties of an all-pass filter with a pole at zero (a = 0). The left-hand column of

plots shows the field PBF h(t) and the intensity PBF p(t), including a zoomed version bottom left. The right-hand

column shows frequency-domain quantities: FT of the field PBF (top), the squared magnitude of the FT (middle)

that is by definition unity, and the phase, which is linear with negative slope and rotates over 2π.
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Fig. 20.— Plots showing a sequence of all-pass filters where the pole describing the filter at a = |a|eiθ is varied

in amplitude as the angle is fixed. The angle is related to the frequency index k by θ = 360◦k/N with N = 1024.
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Fig. 21.— Plots showing a sequence of all-pass filters where the pole describing the filter is at a = |a|eiθ where

the magnitude is |a| = 0.8 held fixed and the angle is varied. The angle is related to the frequency index k by

θ = 360◦k/N with N = 1024.
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Fig. 22.— A sequence of all pass filters based on a single-stage filter h̃1(ν) with |a| = 0.8 and θ = 0◦. The transfer

function is h̃β
1 (ν). The left-hand column shows impulse responses for different β values and the right-hand column

shows the corresponding phase variations vs. frequency.
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Idealized Cases for Determining h(t) III.

Phase retrieval using the Hilbert transform augmented with all-pass filters: Figure 23

shows another example where the phase is retrieved using only the HT. The middle-left panel

shows the true phase of h̃(ν) while the panel below it shows the HT phase. In this case the HT

solution has less phase wrap than the true solution.

To identify where additional phase wraps are needed from AP filters we note the following:

1. As a rule of thumb, a mean time delay of τd samples corresponds to 2πτ total phase wrap;

2. The overall phase trend in the ACF Γh̃ has negative slope, consistent with the causality of

the PBF;

3. Extra phase wraps in the true PBF occur rapidly with changes in frequency;

4. The extra, fast phase wraps also tend to have negative slope (ignoring phase wraps associated

with the inverse-tangent function);

5. Phase jumps also occur in the HT solution, h̃HT(ν) at the same locations as fast jumps

in the true transfer function. However these are positive going jumps as compared to the

negative-going jumps in h̃.

These results suggests that a comparison of neighboring frequencies can indicate the locations of

fast phase wraps. This is where the 2D frequency ACF comes into play,

Γh̃(ν, δν) = h̃(ν)h̃∗(ν + δν).

For a fixed value of δν, the phase of the ACF is the difference of the phase of h̃. The locations

of fast phase wraps appear as positive impulses in the phase of Γh̃(ν, δν). These can be seen

in the bottom-right panel of Figure 23 (blue curve). Phase pulses are also seen in the ACF of

the HT solution, Γh̃,HT (the green curve in the bottom right panel); however, these are negative

impulses. At other frequencies the two ACFs (Γh̃ and Γh̃,HT ) are identical; Therefore the phase

of their product, Γh̃(ν)Γ
∗
h̃,HT

(ν), is expected to be positive near a phase jump and asymptotic to

zero elsewhere in frequency. We use the locations of pulses in the product ACF to define one of

the parameters of a corresponding all-pass filter.

In addition to fast phase wraps, simulations show that a uniform phase rotation of an integer mul-

tiple β of −2π is sufficient to retrieve the phase in some cases. These rotations can be implemented

by using AP filters with coefficients a = 0. In z-transform language, these AP filters are simply

z−β = e−2πiνβ, the same phase factor expected from application of the shift theorem. Below, we

refer to these as “zero-pole” (ZP) filters.
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Idealized Cases for Determining h(t) IV.

Algorithm: For the idealized case where the data are equal to h̃(ν) (i.e. the pulsar signal is a

delta function and there is no additive noise), but we pretend that we can only obtain the spectrum

H(ν) = |h̃(ν)|2 and the 2D ACF Γh̃(ν, δν) (both intensity-like quantities), the overall algorithm

for phase retrieval is:

1. Calculate H(ν) = |h̃(ν)|2 and Γh̃(ν, δν).

2. Use the Hilbert transform to calculate the phase ϕHT(ν) = HT{1
2
lnH(ν)} and the resulting

transfer-function estimate h̃HT(ν) = H1/2(ν)eiϕHT(ν).

3. Calculate the cost (i.e. χ2) by comparing ACFs of h̃ and h̃HT:

C =
∑
ν

∣∣Γh̃(ν, δν)− Γh̃HT
(ν, δν)

∣∣2 .
4. Find the zero-pole (ZP) filter that produces the lowest cost. I.e. For a new transfer function

ZPβ(ν)h̃HT(ν) with

ZPβ(ν) = e−2πiβk/N,

find the integer β that minimizes the cost. Note that β = 0 is possible.

5. Find the locations νj, j = 1, . . . , Nj of phase jumps in the product Γh̃(ν, δν)Γ
∗
h̃,HT

(ν, δν).

Here νj is in units of frequency bins. So far, jumps are found by finding impulses in Γh̃(ν, δν)

that are above a threshold ϕmin = 0.5 rad. Then averages are made over the points above

threshold that correspond to the same jump.

6. Step through the phase-jump list and calculate the angular part of the complex pole: θj =

2πνj/N . Then find the magnitude aj for each jump by minimizing the cost C using the

new transfer function AP(aj, θj, ν)ZPβ(ν)h̃HT(ν). Note the jumps can be fitted individually

because they do not overlap and because the corresponding filters only change the phase.

7. Calculate the complete phase-retrieved PBF as

h̃r(ν) = ZPβ(ν)× h̃HT(ν)×
Nj−1∏
j=0

AP(aj, θj, ν).

8. Calculate the impulse response hr(t) as the inverse FT of h̃r(ν).
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Idealized Cases for Determining h(t) V.

Figure 24 shows the results from applying this algorithm to the simulated case. The left-hand

panels show (from top to bottom) the true phase of the PBF (not accessible to actual measure-

ment), the phase of the ACF of the PBF (which is accessible to measurement) with the locations

of phase jumps identified with red and black symbols, the retrieved phase using the HT, the phase

of from the best fit ZP filter (in this case a −2π phase wrap) , the phase of the best-fit AP filters

(two filters added together for this case, and the final total retrieved phase.

The right-hand panels show field PBFs in the top three panels (true, HT, and total retrieved PBF)

and the corresponding intensity PBFs in the bottom three panels.

For the particular example, the mean pulse-broadening times using Equation 5 are

t̄ = 2.98 samples true PBF

t̄ = 2.12 samples PBF = HT solution

t̄ = 3.12 samples PBF = HT ∗ ZP
t̄ = 3.21 samples PBF = HT ∗ ZP ∗ AP.

For this example, the HT solution underestimates the mean PB time while combining it with the

ZP solution slightly overestimates the PB time and with the AP solution even more so.

Other simulated examples show that the complete solution scatters around the true PB time with

up to 5 to 10% error.

So far only a coarse grid has been used to find the best amplitudes aj for the AP filters and the

thresholding for identifying the jump list has not been optimized, so the error finding the PBF

may be reduced.

Questions: One question is whether the phase retrieval should be perfect, i.e. can a unique

solution be found that is the true solution? For the idealized case where the data are uncon-

taminated by either self-noise in the pulsar or by additive noise, it should be possible to match

the measurable quantities H(ν) and Γh̃(ν, δν) perfectly using a sufficient number of parameters.

However, our algorithm attempts to model the PBF with a minimal number of parameters, so

perfect agreement is not expected.

In realistic situations, self-noise and additive noise are relevant and we cannot expect uniqueness.

The most important question, however, is how well can arrival times be corrected?
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Fig. 23.— Demonstration of full phase retrieval of the PBF. From top to bottom the left-hand panels show the

true PBF h(t), the normalized magnitude of the FT h̃(ν), the phase of h̃(ν), the phase calculated using the HT of

the FT magnitude, and the PBF calculated from the HT phase. On the right side, the panels are the ACF of h̃

integrated over frequency, the ACF of the HT solution for h̃, the magnitude of the ACF of h̃ calculated for a fixed

lag and plotted against ν, and the phase of the ACF.
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Fig. 24.— Demonstration of full phase retrieval of the PBF (continued). From top to bottom, the left-hand

panels show phase vs frequency for: the true PBF, the ACF of the PBF for a fixed lag, the HT phase, the phase

for the best-fit zero-pole filter, the phase for the best all-pass filters, and the total retrieved phase ϕr(ν). The right

hand side shows PBFs: the true field PBF h(t), the HT solution, and the full solution; and intensity PBFs for the

same cases.
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Realistic Cases for Determining h(t)

The real task is to determine h(t) for an actual pulsar signal that has the properties of AMN and

where there is additive noise. The algorithm is the same as before, except the data products used

for the phase retrieval are the intensity spectrum S(ν) and the field ACF Γε̃(ν) instead of H(ν)

and Γh̃(ν). A new quantity comes into play, the intrinsic intensity pulse shape A(t)⇐⇒ Ã(ν) that

must be used in the cost function.

First things first: before attempting a full retrieval we see how well, with sufficient averaging

that the HT analysis applied to the full pulsar signal (including additive noise) does compared to

analyzing the pure h(t) signal.

Figures 25 - 32 show examples of the phase retrieval on the full pulsar signal. The specified signal

to noise ratio is for a single pulse and is the ratio of the pulse peak amplitude to the additive noise.

Self noise from the pulsar implies a separate signal-to-noise ratio, S/Nself = 1/
√
Nr where Nr is

the number of realizations averaged. When both S/N values are large, HT retrieval applied to the

full pulsar yields the same result as HT retrieval of the pure PBF, to within the errors implied by

the S/N.

Fig. 25.— Demonstration of HT phase retrieval applied to the full pulsar signal. This case has W = 20, τ = 10,

net S/N = 105 (after averaging) and averages 100 realizations.
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Fig. 26.— Demonstration of HT phase retrieval applied to the full pulsar signal. This case has W = 20, τ = 10,

S/N = 103 and averages 100 realizations.
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Fig. 27.— Demonstration of HT phase retrieval applied to the full pulsar signal. This case has W = 20, τ = 10,

S/N = 3.2× 103 and averages 1000 realizations.
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Fig. 28.— Demonstration of HT phase retrieval applied to the full pulsar signal. This case has W = 20, τ = 2.1,

S/N = 105 and averages 100 realizations.
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Fig. 29.— Demonstration of HT phase retrieval applied to the full pulsar signal. This case has W = 20, τ = 2.1,

S/N = 103 and averages 100 realizations.
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Fig. 30.— Demonstration of HT phase retrieval applied to the full pulsar signal. This case has W = 20, τ = 20,

S/N = 105 and averages 100 realizations.
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Fig. 31.— Demonstration of HT phase retrieval applied to the full pulsar signal. This case has W = 20, τ = 40,

S/N = 105 and averages 100 realizations.
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Fig. 32.— Demonstration of HT phase retrieval applied to the full pulsar signal. This case has W = 20, τ = 40,

S/N = 103 and averages 104 realizations.
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Toy Model for Obtaining the PBF

Suppose the pulsar signal is intrinsically a delta function. Observations then provide a direct

measure of h(t), or its moments. If combined with additive noise, we need to integrate an intensity-

like quantity, such as the frequency-domain ACF,

Γε̃(ν, δν) = h̃(ν)h̃∗(ν − δν),

where we keep the dependence on ν explicit. For the case where the FT has a length of one period,

the sample interval is ∆ν = 1/P and the lags of the ACF are δν = k/P .

We write the ACF in terms of the magnitude h̃0(νj) and phase ϕ(νj) of h̃ for frequency samples

νj, j = 0, . . . , Nν − 1 and lags δνk, k = 0, . . . , Nδν ,

Γh̃(νj, δνk) = h̃0(νj)h̃0(νj − δνk)e
i[ϕ(νj)−ϕ(νj−δνk)].

We might have a situation where Nν = 1024 and Nδν ≈ 20 (the number of harmonics that describe

the pulse shape). This yields a large number of equations from which the 2Nν unknowns can be

solved.

Consider the case where scintles are well resolved by the frequency sampling, i.e. ∆ν ≪ ∆νd
corresponding to P ≫ 2πτd. If we consider only the first lag of the ACF, δν1 = 1/P , we expect

the amplitude to be nearly constant and the phase will vary slowly. For other lags this may also

hold. Assuming the spectrum H(ν) = |h̃(ν)|2 is available, we have

h̃0(νj)h̃0(νj − δνk) = [H(νj)H(νj − νk)]
1/2 .

We can start with the lowest frequency channel, ν0, and assign it zero phase: ϕν0 = 0. We can

define a new quantity

Gjk = G(νj, δνk) =
Γh̃(νj, δνk)

[H(νj)H(νj − νk)]
1/2

.

Using this, we can show that

eiϕ(ν1) = G11

eiϕ(ν2) = G21G11

...

eiϕ(νj) =

j∏
ℓ=1

Gℓ1.

Thus, in principle, the individual phases of h̃ can be determined. The advantage of this approach

is that no phase is calculated for Γh̃ and so phase-wraps are avoided. The method depends on any

real errors in the ACF being small. Since the solution is from smallest to largest frequency, errors

will accrue and the phase curve will random walk away from the true phase.

A possible remedy is to also work from largest to smallest frequency and to combine the resulting

phase function with that obtained by working from smallest to largest.

Errors can be reduced by using other lags δνk of the ACF. These too must satisfy k/P ≪ ∆νd or

P ≫ 2πkτd.
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Inverse Problems Using the Hilbert Transform

Generally a function cannot be determined uniquely from its autocorrelation function (e.g. Scargle

1981, ApJS, 45, 1). For example, the time reverse of a function has the same ACF and so does

any delayed version of the function.

If a function is causal, there is a fundamental constraint on its Fourier transform (FT): the real

and imaginary parts are related by a Hilbert transform (HT). In physics, causality appears in the

Kramers-Kronig relations for dispersion relations in dielectrics.

For a causal, minimum-delay function, the HT can be used to calculate the FT from the magnitude

of the FT. In particular, if |h̃| is known the phase of h̃ can be calculated as

ϕh̃(ν) =
1

π
P
∫ ∞

−∞
dν ′ ln |h̃(ν)|

(ν − ν ′)
,

where P denotes Cauchy principal component.

Using the phase, the complete FT can be calculated.

For a function that does not have the minimum-delay property, the minimum-delay phase still has

a role. Let h̃HT(ν) be the FT obtained using the HT to calculate the minimum-delay solution. It

can be shown (e.g. Oppenheim & Shafer 1989) that the true FT can be written as

h̃(ν) = h̃HT(ν)Z(ν),

where Z(ν) is an “all-pass” filter with unit amplitude that comprises some number of zeros of

exp(−2πiν) in the complex plane and that changes only the phase.

The all-pass filter can be written as the product of Q individual factors involving the zeros s−1
j

where exp(2πiν) = 0,

Z(ν) =

Q−1∏
j=0

(
e−2πiν − sj
1− s∗je

−2πiν

)
,

and where each factor and thus Z has unity magnitude. The numerical task is to determine the

values for sj (2Q unknowns) and the value of Q itself. Determination is aided by the fact that the

zeros s−1
j are outside the unit circle and by the possibility that Q is much smaller than the overall

length of a time series.

Figure of merit: least squares + positivity constraint on the deconvolution. Could use entropy to

do that.
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Hilbert Transform Example

Fig. 33.— Example phase retrieval for a one-sided exponential that initiates at the time origin, h(t) = e−t/τU(t)

where U is the unit step function.
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A. Role of Pulse Jitter

Most if not all pulsars show phase variations of individual pulses within the on-pulse window

defined by the average profile. Typically the rms phase variation is approximately equal to the

width of a single pulse.

The amplitude modulation defined previously was strictly periodic. We can introduce jitter by

including a term ϕjP to the argument of each pulse:

a(t) =

Np∑
j=0

a1(t− jP − ϕjP ).

The FT is now

Ã(ν) = Ã1(ν)

Np∑
j=0

e−2πijνP e−2πiϕjνP

If ϕj is a Gaussian random variable with zero mean and variance σ2
ϕ, the ensemble average of the

complex exponential is 〈
e−2πiϕjνP

〉
= e−(2πσϕνP )2 .

The average FT of the periodic signal + jitter is then

Ã(ν) = P−1
[
Ã1(ν)e

−(2πσϕνP )2
]
δ(ν − k/P ).

Interpretation: jitter is automatically included in the average pulse profile. For an ensemble aver-

age, the jitter factor is identically the characteristic function of the pulse-phase jitter distribution.

(In reality, of course, there are also pulse amplitude variations that would be included with jitter

in a 2D joint PDF.) For a 1D Gaussian PDF for the jitter, the characteristic function is another

Gaussian, as above. For an FT from a finite-length data set, the contribution of jitter to the pulse

shape will vary from realization to realization.
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B. Notes on Signal Levels, etc.

Normalizations etc. are given for the FFT used in python. Unless stated, all expressions are for

the no-smoothing case.

Statistics for single realizations:

White, Gaussian, complex noise:

n(t) −→ ñ(ν) −→ N(ν) = ⟨|ñ(ν)|2⟩ = σ2
nNFFT ≡ N0NFFT.

The mean power spectrum level is N = N0NFFT and the rms value is equal to the mean, σN = N .

Amplitude modulated noise:

εi(t) ≡ a(t)m(t) −→ ε̃i(ν) −→ Si(ν) = ⟨|ε̃i(ν)|2⟩ = σ2
m

∑
j

a2(tj) ≡M0NFFTĀ = M0AmaxWA,

where Ā = N−1
FFT

∑
t A(t) with A(t) = a2(t). We can write Ā ≡ AmaxWA/NFFT where WA is an

equivalent width in units of samples.

The mean power spectrum is Si = M0AmaxWA and the rms value is equal to the mean, σSi
= Si.

The net mean spectrum (excluding DISS) is S(ν) = Si(ν) +N(ν) with a ratio of spectral levels

Rν =
Si

N
=

M0NFFTĀ

N0NFFT

=
M0AmaxWA

N0NFFT

.

We define the signal-to-noise ratio of the signal ϵi to the additive noise n in the time domain as

the ratio of pulse peak to rms noise in the intensity:

Rt = S/N ≡ Amax

σ2
n

=
Amax

N0

,

which gives

Rν =
M0WARt

NFFT

−→ WARt

NFFT

,

where the rightmost expression is for M0 = 1, as used in the code.

The mean spectra of both the noise and the signal are flat and the rms values of each component

are equal to the respective means.

Scaling: We can scale both spectral components so that the mean level of the signal part (Si) is

unity. The appropriate scale factor of εi(t) + n(t) to achieve this is s = 1/
√
M0AmaxWA. To get a

specified S/N in the time domain (i.e. Rt), we also multiply n(t) by 1/
√
Rt.

Thus to have Si = 1 we have:

εi(t) −→ εi(t)/
√

M0AmaxWA.

n(t) −→ n(t)/
√
M0AmaxWARt.
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In the time domain this yields a pulse maximum

Imax =
1

WA

and mean and rms off-pulse values

⟨N(t)⟩ =
1

WARt

σN =
1

WARt

√
Nr

,

where Nr is the number of realizations averaged.

For the signal spectrum set to unit mean, the noise spectral level is

N(ν) =
N0NFFT

(M0AmaxWARt)
−→ NFFT

WARt

,

where the rightmost expression is for N0 = M0 = Amax = 1, as implemented in the code.

The rms values of each component are still equal to the respective means.

Averaging over Nr realizations:

When Nr realizations are averaged, intensity-like quantities in either domain have the same mean

values but their rms values decrease by N
−1/2
r .

For the scaled signal (so that Si = 1), we have

σN(t) =
N0

WARt

√
Nr

σSi
=

1√
Nr

σN(ν) =
N0NFFT

WARt

√
Nr

= σN(t)NFFT.

Rt =
Amax

N0

√
Rt

.
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C. Pulse Broadening Function

We define the PBF in terms of moments of the wavefield. Let the scalar wavefield at the observer’s

location at frequency ν be ε(ν). In practice, a narrowband portion of the field centered on frequency

ν0 is processed, which we define as

εB(ν) = b(ν − ν0)ε(ν), (C1)

where b(ν) is a low-pass function with bandwidth B. We define b(ν) to have unit area. We will

need the Fourier transform of b(t),

b̃(t) =

∫
dν b(ν)e2πiνt, (C2)

which is a pulse-like function with characteristic width ∼ B−1. An impulse from the pulsar

propagating through a vacuum would yield a measured pulse of this shape.

An estimator (denoted with a caret) for the autocorrelation function (ACF) vs. frequency lag δν

of the narrowband field is

Γ̂ε(δν) =

∫
dνb(ν − ν0)b

∗(ν + δν − ν0)ε(ν)ε
∗(ν + δν). (C3)

Its ensemble average is 〈
Γ̂ε(δν)

〉
= Γε(δν)Rb(δν), (C4)

where the ensemble average of the true ACF is

Γε(δν) = ⟨ε(ν)ε∗(ν + δν)⟩. (C5)

and the ACF of the bandpass function is

Rb(δν) =

∫
dνb(ν − ν0)b

∗(ν + δν − ν0). (C6)

An impulse δ(t) at the source produces a response — the PBF — at the observer’s location given

by the Fourier transform of the wavefield ACF

pd(t) =

∫
dδν Γ̂ε(δν)e

2πiδνt. (C7)

The PBF is a real function because Γε(δν) is Hermitian and it has positive area,
∫
dt pd(t) =

Γ̂ε(0) ≥ 0. The PBF is also a function of epoch because the geometry changes owing to motion of

pulsar, screen and observer, so it should also be considered a function of epochal time.

The ensemble mean PBF is

pd(t) =

∫
dδν

〈
Γ̂ε(δν)

〉
e2πiδνt, (C8)
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whose Fourier transform is the convolution of the true field correlation function Γε and the instru-

mental function Rb.

We introduce time dependence in order to define the dynamic spectrum,

I(t, ν) = |ε(t, ν)|2. (C9)

The two-dimensional ACF of the dynamic spectrum is

ΓI(δt, δν) = ⟨I(t, ν)I(t+ δt, ν + δν)⟩ = ⟨|ε(t, ν)|2|ε(t+ δt, ν + δν)|2⟩ = ⟨I⟩2 + |Γε(δt, δν)|2,(C10)

where the last equality follows for strong scattering when the scattered wavefield has Gaussian

statistics (e.g. Rickett 1990). We are interested in the zero time-lag slice of the 2D ACF and we

define the second term as the intensity autocovariance function (ACV),

ΓδI(δν) = ⟨δI(t, ν)δI(t, ν + δν)⟩ = |Γε(δν)|2 = ΓI(0, δν). (C11)

The scintillation bandwidth, ∆νd, is defined as the HWHM of this function. This definition along

with the choice of 1/e width of the PBF is motivated by the case where the PBF is a one-sided

exponential, for which 2π∆νdτd = 1. In practice, of course, we operate on the narrowband field

and intensity, so the above integrals will include factors involving b(ν).

The secondary spectrum is the power spectrum of the dynamic spectrum, i.e. a fourth moment of

the field:

S2(ft, fν) =
∣∣∣Ĩ(ft, fν)∣∣∣2 . (C12)

The intensity ACV defined above, ΓδI(δν), is the Fourier transform of the integrated secondary

spectrum,

ΓδI(δν)⇐⇒
∫

dftS2(ft, fν). (C13)

The integral of the secondary spectrum over ft is the ACF of the pulse broadening function,

Γpd(τ) ≡
∫

dt pd(t)pd(t+ τ) ∝
∫

dftS2(ft, τ) ∝ Γpd(τ). (C14)

Formally fν is a variable conjugate to δν that has units of time and often is referred to as a “delay.”

However, it is really the time lag in the ACF of the PBF and is not directly related to the delay

of a pulse imposed by ISS.
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AMN Components, Example 2: Single Pulse

Fig. 34.— Components of scintillated amplitude modulated noise in the time and frequency domain. Amplitudes

are plotted in blue, phases in red.
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AMN Components, Example 3: Single Pulse

Fig. 35.— Components of scintillated amplitude modulated noise in the time and frequency domain for a single

pulse. Amplitudes are plotted in blue, phases in red.
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AMN Components, Example 4: Periodic Case

Fig. 36.— Components of scintillated amplitude modulated noise in the time and frequency domain for a periodic

train of pulses. Amplitudes are plotted in blue, phases in red.
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AMN Components, Example 5: Periodic Case

Fig. 37.— Components of scintillated amplitude modulated noise in the time and frequency domain for a periodic

train of pulses. Amplitudes are plotted in blue, phases in red.
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AMN Components, Example 6: Periodic Case

Fig. 38.— Components of scintillated amplitude modulated noise in the time and frequency domain for a periodic

train of pulses. Amplitudes are plotted in blue, phases in red.
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SAMN Intensity Statistics Example 2

Fig. 39.— Time domain intensity-like quantities are shown on the left. Frequency-domain quantities are on the

right. The dotted lines in the plots for Si(ν) and S(ν) are averages over 10 realizations. The ISM transfer function

H(ν) is kept fixed for all realizations, so the average of S(ν) tends toward the shape of H(ν). The ACFs Γε̃i and

Γε̃ are averaged over 10 realizations, as indicated.
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SAMN Intensity Statistics Example 3

Fig. 40.— Time domain intensity-like quantities are shown on the left. Frequency-domain quantities are on the

right. The dotted lines in the plots for Si(ν) and S(ν) are averages over 100 realizations. The ISM transfer function

H(ν) is kept fixed for all realizations, so the average of S(ν) tends toward the shape of H(ν). The ACFs Γε̃i and

Γε̃ are averaged over 100 realizations, as indicated.
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SAMN Intensity Statistics Example 4

Fig. 41.— Time domain intensity-like quantities are shown on the left. Frequency-domain quantities are on the

right. The dotted lines in the plots for Si(ν) and S(ν) are averages over 104 realizations. The ISM transfer function

H(ν) is kept fixed for all realizations, so the average of S(ν) tends toward the shape of H(ν). The ACFs Γε̃i and

Γε̃ are averaged over 104 realizations, as indicated.
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Fig. 42.— Components of scintillated amplitude modulated noise in the time and frequency domain for a periodic

train of pulses. Amplitudes are plotted in blue, phases in red.


